
1

GL v0.35

by Jeff Quan
jquan@mindspring.com

March 2010

What is GL?
GL is a complete REALbasic-written replacement of RB3D, the 3D API built into REALbasic.
The goal was to not only write as close to a feature-complete implementation of RB3D using
OpenGL calls and thus obviating the need for Quesa. GL also takes things a step further,
allowing one to accomplish things which are now diffi cult to achieve without resorting to
declares. Basically, Jeff added in what he always wanted to see in RB3D.

What’s missing?
Instead of listing what’s been duplicated from RB3D’s API, we’ll list what has not been
duplicated because that list is shorter. So here they are:
• Object3D.AddShapeFromHandle
• Object3D.AddShapeFromString

That’s it! Having already written a 3DMF parser for binary fi les (and only a subset of 3DMF to
boot), it’s hard to justify expending time on a format which is essentially dead, which means
text-based 3DMFs are out. Perhaps someone in the RB community can step up and fi ll in the
blanks.

I should also point out that some methods and properties have been moved around a bit.
For example, Material can only be found at the glElement3D level and no longer is just for
glObject3Ds and glTrimeshes.

What’s new?
After the above, there are plenty of things added. The ideas is to expose as much OpenGL
functionality without making someone have to dig into OpenGL esoterica, but the hooks are
there if you want to delve deeper — a near-complete set OpenGL declares are available,
covering nearly all extensions and OS-specifi c enhancements. The API tries to stay as close as
possible to RB3D’s functionality so as to not throw off those who have already invested time in
RB3D, but that said, here’s a partial list of what you can now do with GL:

• Support for glu Quadric objects and custom Torus and Box objects.

• Importing of Wavefront OBJ (text), 3DMF (binary), and Milkshape (binary) formats.

• Opacity levels can be set for any object or group.

2

• Support for the OpenGL Shader Language (GLSL) as well as OpenGL’s low-level shaders.

• Certain effects can now be applied on a per-item basis. For example, you can set an object or
group of objects to ignore fog while all other objects respect fog.

• How an object is blended can be affected. For example, if you want to render particles, you
can set each or a group of glTrimeshes to be drawn as an additive blend, which can make it
look like the particles are “hotter” than a simple NullShaded texture.

• GL supports more than one texture per glTrimesh, up to the limit of your graphics card,
and even set how that texture is overlaid onto the previous texture(s). Because of this new
functionality, glTrimesh.Material is now an Array of type Material.

• UV coordinates aren’t the only way textures can be applied to a glTrimesh. You can also have
GL generate coordinates for you, which is useful for creating refl ective surfaces or simulate
per-pixel specular highlights. There’s even a new glCubeMap class which takes advantage of
this.

• Full screen antialiasing can be turned on (Mac only)

• You can add a glow to your scene, setting which objects glow and which do not. Same with
radial blurring. These are rudimentary functions right now.

• Object3D trimeshes are now mutable. In RB3D, one cannot modify vertex positions of the
trimeshes within. This isn’t necessarily a bad thing, however, and such immutability may
return as a boolean switch or an entirely new subclass of glElement3D — the less you modify
Trimeshes, the faster your scene will render. Note that you cannot transform a trimesh (ie:
position/rotate/scale) within an Object3D. If that’s what you need, then use a glGroup3D.

• Group3Ds, Object3Ds, and Trimeshes are all Cloneable.

• You can load a 3DMF fi le into the Trimesh class. The caveat is that it will only load the fi rst
Trimesh it fi nds within a 3DMF. The reason this functionality exists is because an 3D object
with only one Trimesh will render faster from a glTrimesh than from a glObject3D.

• You can also load OBJ and MS3D fi les into either Object3D or Trimesh. There is support for
fi les with multiple groups, splitting each group into a Trimesh. It will also handle loading of
textures as well.

• Groups are no longer as expensive: in RB3D, there is a warning about grouping lots of objects
and moving them around being expensive — this has been mitigated. However, groups can
overrun OpenGL’s ModelView matrix stack if Groups are nested too deep. While that limit is
dependent on your graphic card’s stack, OpenGL’s specs say at least 32.

3

Compatibility
GL was designed primarily for systems running OpenGL v1.5 and above. There currently is little
or no support for OpenGL versions below this. If you use GLSL, then your requirements jump to
OpenGL 2.0 or at least support for the appropriate ARB extensions.

Namespaces
While there is no namespace per se, all RB3D-equivalent classes have a “gl” prefi x, so a
RB3Dspace becomes a glSpace, Trimesh becomes glTrimesh, Object3D becomes glObject3D,
and so on. All functions and properties retain the same names as their RB3D counterparts.

Excuse the dust...
With all the hoopla just laid out above, this is a very much an in-progress work. I (Jeff) started
this project to learn OpenGL, and to that end I’m still very much a student. Just like any
motorhead, I’m constantly tinkering under the hood, trying to clean things up and make things
run as smooth as I can, and there are plenty of areas which remain unoptimized. The code can
be a bit of a mess, so consider yourself warned.

While efforts have been made to test as many of the functions, there’s always room for your
help. Please feel free to email me (Jeff at jquan@mindspring.com) with any bugs you might
come across. Also feel free to suggest improvements.

Known issues
Windows compatibility could be iffy — I have no Windows machine to test on. Windows is also
missing antialias support at the moment — I was a bit naive in coding it and will need to take a
second pass. Linux compatibility is also something that I’d like to see happen as well.

The mesh renderer uses Vertex Buffer Objects. This automatically bumps the OpenGL
requirements to at least 1.5 or at least requires the extension ARB_vertex_buffer_object. This is
not an error per se, but it’s something to keep in mind.

GL shares a similar problem to RB3D: the more objects, the slower the frame rate. While this
seems like an obvious statement, the fact is that the number of polygons doesn’t play that
large a role — ie: GL isn’t polygon-limited (though your GPU might be). I’ve done lots of work
to make sure GL can handle more objects than RB3D, but the truth of the matter is that GL is
very much still a generic scene graph much as RB3D is: you can certainly make an REALbasic
OpenGL app yourself that runs faster than GL. Note that you can help increase frame rates by
implementing your own view culling system — GL has none built in.

The goal was to replicate RB3D, which does tend to add a bit more overhead both on the CPU
and GPU side. I’ve tried to mitigate it by giving you more control over what gets updated (I’ve
seen framerates jump by over 20% when certain parts are skipped). If you stripped out what you
didn’t need from GL, I’d wager you’d see framerates more than twice what they are now. If you

4

add your own frustum culling code (while GL has functions for frustum culling, it doesn’t perform
it automatically), you’ll see a huge speed up as well.

Loading of 3DMF fi les can be slow. This is because of textures: 3DMF textures must be
converted so that when Material.Texture is called, it returns a valid Picture for you to see.
There’s probably a Declare somewhere that will speed things up, but I haven’t tried to look for
one yet.

Transparency is another issue: because of the way it’s currently handled, it’s possible that GL
might break some of the properties that you’ve set: for example, it might turn off null shading on
your models or some other glState. Note that this is a programming fl aw on my part: there are
lots of moving parts when it comes to dealing with transparency, and I only caught it at it’s most
basic level. Transparency works as intended for glTrimeshes and glGroup3Ds. There’s still an
issue at the glObject3D.Trimesh level: because of the way they’re drawn, a transparent Trimesh
within a glObject3D will still occlude sibling Trimeshes. Note that setting transparency on a
glObject3D as a whole works as intended.

Currently, a glSpace attaches itself to a window, not a to some sort of RectControl such as
RB3D. Also, only one glSpace is allowed per app — you cannot have two windows with
separate glSpaces attached to each. Hopefully these will be addressed in a future update.

Object picking can be slow. This is because it is unoptimized right now, performing a separate
rendering pass on the entire scene in order to generate the pick results from OpenGL.

Importing of 3DMF or OBJ formats is limited to a subset — it won’t parse everything that these
formats can contain. The good news is that as long as the fi le’s extension is correct, you don’t
need to specify the fi le format (See File Formats section).

About this reference
This document is NOT a complete reference to GL itself. It’s primary purpose is to document
material that has been added in addition to or replaced over its RB3D counterpart. For the most
part, you should consult REALbasic’s built-in reference guide for RB3D for the stuff not covered
in this document or scour the web should you use the OpenGL shading languages supported.
While I understand REALsoftware has removed the reference to RB3D in the latest version of
REALbasic due to deprecation, the material is still copyrighted to them and thus I cannot copy
them into this manual without their consent.

The document is structured much like REALbasic’s reference. This was done to make it easier
for those familiar with REALbasic to jump right in and not feel lost, which, in my experience, is
very easy to do with documentation that serves as a third-party adjunct to a primary product.
For example, like REALbasic’s reference manual, keywords marked in bold are read-only or are
not meant for users to call on their own. In the case of bold-faced functions, this usually means
they’re exposed because other classes need to call them.

5

0.35 — March 23, 2010
- [FIX] glCopyTexSubImage2D was incorrectly declared for RB2009r2 and lower (correctly

declared for RB2009r3 and above, however).
- [FIX] MatrixMath.Mult4x4Matrix multiplication order switched. Previously multiplied B x A

instead of the expected A x B.
- [NEW] MatrixMath Module removes matrix stuff from glManager Module.
- [FIX] glGroup3D.Opacity is now working.
- [FIX] Update to Quaternion.MultiplyBy. Older version may have been inaccurate.
- [FIX] OpenGL declares to built-in OpenGL Module now only for RB2009r3 and above.
- [FIX] Stability improvements to grabbing large screenshots.
- [FIX] Texturing mistakes cleaned up. Before, it was possible that a texture might be applied to

the wrong object under certain circumstances. Note that more fi xes may be still forthcoming in
this area.

0.31 — February 26, 2010
- [NEW] In RB2009 and above, OpenGL declares will use built-in OpenGL Module equivalents.
- [FIX] Now compiles without need for Quesa in RB2009 and RB2010.

0.3 — February 22, 2010
- [NEW] Ability to take large screenshots (uses same inputs as RB3D’s RB3Dspace.GetPicture

function).
- [NEW] Initial support for Milkshape MS3D binary import capability.
- [FIX] Multitexturing has now been fi xed.
- [FIX] Enhanced face parsing for the Wavefront OBJ format. Still could use some tweaking,

though.
- [FIX] Corrected glSpace.glFogMode constant.
- [FIX] Corrected Declares for glTexImage, glDrawBuffers, and the OpenGL Extensions that are

used to create frame and render buffers.
- [UPDATE] Clarifi ed docs for File Formats.
- [UPDATE] Switched many of the “hard” Declares to “soft” only because they are cached and

thus might avoid the overhead of a function call. I have no hard proof to back up that this might
shave a few CPU cycles. Note that there could be problems with Linux Declares, but I won’t
know until I start work on Linux support.

- [FIX] Fixed check for ARB extensions.

0.2 — January 11, 2010
- [NEW] Initial support for Windows.
- [NEW] Added glTorus and glBox classes.
- [FIX] Fixed glLight3D class to better handle spotlights. Might not be fully correct, though.
- [FIX] Corrected glLight3D docs erroneously stating that SpotlightAngle used radians (it uses

degrees).

0.1 — December 17, 2009
- First public release.

Version History

6

My version of RB3D is not built in a vacuum and in fact built upon the shoulders of giants.
This might not be an exhaustive list, so if I’m forgetting anyone, many apologies!

REALbasic gurus
Joe Strout
John Balestrieri
Matthijs van Duin
Thomas Cunningham
Nick Lockwood
Tim Skillman
Charles Yeomans

Kudos
Nathaniel Stensland

Others
Marek Mizanin
Christer Ericson
Martin Baker

Web sites
The Game Programming Wiki (http://gpwiki.org)
NeHe’s OpenGL tutorials (http://nehe.gamedev.net)
Gamedev.net (http://www.gamedev.net)

Thanks

7

File Formats

Supported formats
GL supports loading the following formats into a glObject3D or glTrimesh:
• 3DMF (binary) • Milkshape MS3D (binary)
• Wavefront OBJ (text)

The parser can separate different groups of meshes within a fi le into separate glTrimeshes,
storing them within a glObject3D. For 3DMF, it will parse glTrimeshes in Containers, for OBJ
and MS3D, it will focus on Groups. For loading into glTrimeshes, only the fi rst mesh found will
be stored — the rest are discarded (NOTE: the entire model is currently loaded before any
discarding is done).

Support is limited to a subset
Because OpenGL is primarily a polygon-based renderer, there is currently no support for
handling advanced data such as quads, n-gons, bones, parametric surfaces, bezier curves,
object primitive creation, lights, or even entire scene graphs. GL focuses on primarily on loading:
• vertex position • vertex color • triangle indices
• vertex normals • vertex UV coordinates • textures

Any other data is ignored.

Textures
Texture data is also read in and parsed accordingly. GL understands the OBJ .mtl format and
will look for one in order to extract textures from it. For MS3D, GL expects a relative path from
the object’s fi le; absolute paths will fail.

Note that for 3DMFs, textures are the main reason it takes so long to load a 3DMF into GL:
textures are decoded TWICE so that can one can be sent into the OpenGL pipeline AND the
other converted into a REALbasic Picture class-digestible format (larger textures = slower
conversion). Loading textures that are separate from the model fi le is usually faster because the
textures can usually be saved in a REALbasic Picture class-friendly format (like PNG or JPEG),
thus skipping a decode step.

Known Issues
File importing has not been tested against a wide variety of 3D applications, so there may be
discrepancies and unexpected errors that will need correction in a future update.

Only fi les with triangulated meshes can be loaded — any quads or n-gons found will result in an
error and no fi le loaded. While this is already mentioned above, it’s worth repeating.

The OBJ parser cannot work with relative indices. These usually show up as negative integers
in any face declaration, ie: f -5/0/4 -3/-3/5 2/4/-3

File Formats

8

glStates

OpenGL and the concept of state
OpenGL is nothing but a state machine: whatever order elements are put in, that’s the order
they’re rendered. While OpenGL helps with depth-sorting objects so that objects are rendered
correctly, everything else is shoved through as is. The take home message is that whatever
state is set up front will affect everything else behind it until that state is changed yet again.

For example: consider the psuedocode:
set wireframe = True
render object 1
render object 2
set wireframe = False
render object 3
render object 4

Objects 1 AND 2 will render as a wireframe, while objects 3 AND 4 will not.

glStates capitalize on this by being attached to any glElement3D. This means that a state can be
set at the group level or trimesh level, as groups, object3D, lights, and trimeshes are subclasses
of GLelement.

Because groups can now control the states of everything inside of it, you don’t have to explicitly
set each individual object’s state: objects within a group will inherit the group’s state settings.

This makes things more interesting, as you can do effects that aren’t possible in RB3D without
declares, such as having a group of objects ignore fog while other groups respect it, or only
having a single object out of a group use a different custom blend than the others.

Because you can set a state and have it affect all others, there is a chance that a user will
change so many states that they’ll become hopelessly lost trying to undo any set states. To that
end, GLelements know how to clean up after themselves: any states changed by a GLelement
will be restored to the states they were in before the GLelement changed it when said GLelement
is done drawing. This is done in the GLelement.RestoreStates function. Some psuedocode might
clear things up:

Group
 ChangeStates
 Draw
 Element #1
 ChangeStates
 Draw
 RestoreStates
 Element #2
 ChangeStates
 Draw
 RestoreStates
 RestoreStates

Introduction to glStates

9

glStates

In the psuedocode, you can see that each GLelement (GLgroup, Element #1, and Element
#2) treats its own set of glStates as local to itself, changing states, drawing what it needs to
draw, and then restoring them afterwards. Note that the GLgroup restores states AFTER the
two GLelements have been drawn, so it’s states can affect elements within (unless an element
counteracts the group’s states with its own).

The psuedocode also shows that Elements #1 and #2 can override glStates attached to Group.
This is what makes glStates more powerful than a simple boolean value: if, for example, Group
has a NullShader glState and the two Elements do not, then the Nullshader will implicitly mean
the two GLelements will also share the same NullShader glState as the Group. However, if, say,
Element #2 has its own NullShader, than Element #2 can override the NullShader attached to
GLgroup and render itself differently from Element #1. See NullShader glState Class for a more
detailed example and how to kill a glState when no longer needed.

This makes glStates extensible, as new glStates can be added in the future without having to do
a complete rewrite of every GLelement.

This added functionality does come with a cost: changing states in OpenGL, while quick,
becomes costly when done for every element in a scene. Because of this, glElement3D has a
boolean called IgnoreChangeStates which allows one to bypass state changes. Referring back
to the prior pseudocode — if state changes were turned off for each element, the group change
states would preside and the code would reduce to:

Group
 ChangeStates
 Draw
 Element #1
 Draw
 Element #2
 Draw
 RestoreStates

Also note that so long as an element within a group does NOT have a glState that contradict’s
the group’s glState, then by default that element will honor the group’s glState settings.

Because of the way objects are rendered, all glStates are applied “bottom-up,” so to speak: say
you have a group with two elements and you want the NullShader in effect:

 Group (NullShader = True)
 Element #1 (NullShader = False)
 Element #2 (No NullShader set)

Even though the Group has it’s NullShader set to True, only Element #2 will
obey the Group’s Nullshader setting. Element #1 has its own NullShader set, and thus ignores

10

glStates

the Group setting.

You must manually set the NullShader in Element #1 to kill itself if you want that element to
respect the Group’s NullShader settings — setting the element’s NullShader to False just turns
off the element’s NullShader, but will still override the Group’s NullShader setting. Remember:
your framerates will be faster if there isn’t a glState to update as opposed to having two glStates
in different Glelement3Ds set with the same value.

To kill Element #1’s NullShader setting, use the following code:

Dim err As Boolean
err = Element1.KillState(“NullShader”)

The err variable will show you if the kill is successful.

Note that most of the states need NOT be explicitly added to an element — they’re
automatically added as needed. Note that states are NOT automatically removed — there is
no way for a state to know when it has outlived its usefulness, so it’s up to the user to explicitly
call glElement3D.KillState with the name of the state to kill. KillState doesn’t remove the state
immediately upon call, as states usually must restore whatever it changes. Instead, a fl ag is set
(isDead) which will clue the glElement3D.ChangeStates function to delete any states.

The current listing of states is as follows
• CustomBlend
• IgnoreFog
• NullShader
• RenderBackFaces
• RenderAsFlatPolygons
• RenderAsPoints
• TrimeshScaled
• Wireframe
• GlowEnabled
• RadialBlurEnabled
• Opacity
• VertexProgram
• ShaderProgram
• GLSLprogram

Class types
This is a description of what each state does. A more detailed explanation comes after this
section.

CustomBlend
This allows you to add objects into the scene in unique ways. This primarily affects pixels:

11

glStates

the source pixels are blended with the destintaion pixels based on the inputs to this function.
There are a myriad number of ways to combine the two, but only certain ones make sense.
glElement3D.SetCustomBlend sets this state.

Within the glElement3D.SetCustomBlend function, there are a few presets that are useful and
are fully described in the comments in the code. A more complete description of what you can
do can be found at http://www.opengl.org/documentation/specs/man_pages/hardcopy/GL/
html/gl/blendfunc.html or by searching the Internet for “glBlendFunc”.

NullShader
Same as RB3D: if set to true, all objects will render as if fully-lit from all sides and thus will
look fl at, with no shadowed edges.
glElement3D.NullShader is the way to set this state.

RenderBackFaces
Same as RB3D. if set to true, objects will render polygons both facing the viewer and away.
glElement3D.RenderBackFaces will set this state.

RenderAsFlatPolygons
If true, renders objects without vertex normals, resulting in a faceted look.
glElement3D.RenderAsFlatPolygons sets this state.

RenderAsPoints
If true, renders objects as just vertex points. Textures, if they exist, will still color each vertex.
Use this in conjuction with glElement3D.SetPointSize to set the size (in pixels) of each point
(default = 1.0). Because point sizes are in pixels, the pixels do not scale as an object gets
closer to the camera or recedes, remaining a constant size, as if the points were drawn on a
2D canvas rather than a 3D space.

glElement3D.RenderAsPoints sets this state.

TrimeshScaled
Used to set object normals back to unit length if an object is scaled. If an object’s normals
are not of unit length, lighting of that object will not be correct. While this might actually be a
good thing artistic-wise, this errs on the side of caution and assumes a user wants things to
look correct during an object scale.

TIP: It’s best if you never scale your objects at all, thus removing the overhead of having this
class make sure all normals are correct.
glElement3D.Scale and glElement3D.ScaleVector atuomatically sets this state.

Wireframe
If true, renders objects as wireframe. This state will respect if backfaces are rendered or not.
Textures, if they exist, will texture each line. This is no longer a global RB3Dspace setting:
any GLelement can be set this way.

12

glStates

Use this in conjuction with glElement3D.SetLineWidth to set the wireframe line width in pixels.
(default = 1.0). Similar to RenderAsPoints, because line widths are in pixels, line widths do
not scale as an object gets closer to the camera or recedes.
glElement3D.Wireframe sets this state.

GlowEnabled
If true, this object is to be used towards the glow effect. The glow effect is a global one with
parameters set at the glSpace level; you cannot set the amount of glow for each element
separately. WARNING: The more objects enabled, the slower the rendering, so use with care.

RadialBlurEnabled
If true, this object is to be used towards the radial blur effect. Like GlowEnabled, the effect
occurs at the glSpace-level and has no other element-level settings. Also like GlowEnabled,
the more elements enabled, the slower your rendering.

Opacity
If set, this sets the opacity for all objects at and below the level of this element3D (unless
explicitly overriden by another Opacity glState). 1.0 = fully opaque, 0.0 = invisible. The more
objects you set to be transparent, the slower your rendering. In general, the rendering hit isn’t
as bad as GlowEnabled or RadialBlurEnabled.

VertexProgram
Adds the ability to use OpenGL’s low-level vertex programs. This requires at least OpenGL
1.4 and exposes the ability to manipulate OpenGL’s low-level shading language for vertices
(this is NOT GLSL).

ShaderProgram
Adds the ability to use OpenGL’s low-level shader programs (again: this is NOT GLSL). This
is similar to VertexProgram.

GLSLprogram
Adds the ability to use OpenGL’s Shading Lanuage: GLSL. This requires at least OpenGL 2.0
or the appropriate ARB extensions.

Note about GLSL
GLSL support at this stage is a bit rudimentary. While GLSL code will load correctly, it may not
run correctly due to the way GLSL is currently woven into GL. This doesn’t mean it’s impossible
— you might need to create your own GL class in order to get GLSL to work properly.

Also note that GLSL will override glStates — a GLSL-written null shader gives far greater control
than the built-in NullShader glState ever can. However, once you apply GLSL, that bumps up
your app’s OpenGL version requirements to 2.0 and will override any built-in shading such as
NullShader or Wireframe or even lighting because GLSL overrides the built-in OpenGL shading
pipeline — you need to write EVERYTHING yourself. glStates generally will work on OpenGL
versions 1.3 to 1.5. Keep this in mind when targeting older GPU cards.

13

glState Class

glState Class
Parent class interface — do not invoke manuallly!

Methods

Name Parameters Description
Change renderingPass As UInt8 This is primarily called by glElement3D.

ChangeStates to set whatever function
is called for by the glState subclass.
The parameter informs the state of
what rendering pass is being made at
the moment — this allows a glState
to bypass a particular pass if the pass
doesn’t require it.

Constructor s As Boolean The default constructor sets whether or
not the glState is active or not (active
= True). Other subclasses may set up
their own parameters to override this.

IsEqual gls As glState Checks self against gls to see if they’re
carrying the same value(s).

Restore renderingPass As UInt8 This is primarily called by glElement3D.
RestoreStates to restore the previous
value that this glState has set in the
Change method.

Type Returns a string identifying the
subclass.

Notes
The parent class shows the structure of how to create your own glState. The two
primary methods are:
1. Change
2. Restore
Whenever you invoke a glState, it should remember what the current OpenGL state is
before changing it. Once done, it should restore the original state.

Remember that a glState attached to a glGroup3D will not restore until after all items
within the group are updated.

See Also
glElement3D Class

14

glState: CustomBlend Class

CustomBlend Class
Handles how an element is blended with the rest of the scene.

Methods
Name Parameters Description
Constructor s As Boolean,

BlendSrc As Integer,
BlendDst As Integer

Creates and sets the blend function
variables. Parameter s turns on
or off the blend function (True =
on). BlendSrc and BlendDst are
OpenGL constants, and can be one
of the values from the table below.

BlendSrc specifi es how the red, green, blue and alpha source blending factors are
computed.

BlendDst specifi es how the red, green, blue and alpha destination blending factors
are computed.

Parameter What Happens
GL_ZERO Color is ignored
GL_ONE Color is added
GL_DST_COLOR Color multiplied by the destination color
GL_ONE_MINUS_DST_COLOR Color multiplied by inverted destination color
GL_SRC_ALPHA Color multiplied by the source alpha value
GL_ONE_MINUS_SRC_ALPHA Color multiplied by inverted source alpha value
GL_DST_ALPHA Color multiplied by the destination alpha value
GL_ONE_MINUS_DST_ALPHA Color multiplied by inverted source destination

value
GL_SRC_ALPHA_SATURATE Color is multiplied by MIN(source alpha,

1 - destination alpha)

In glElement3D, there’s a SetCustomBlend function that has a few presets, which here
is described in Photoshop layer blending terms:
BlendTypeEnum.Normal Default — object is rendered as is.
BlendTypeEnum.ColorDodge Brighter glow than Normal.
BlendTypeEnum.ScreenMultiply Goes from a screened to a multiply look when

varying opacity. Object is still fully opaque.
BlendTypeEnum.ScreenXray Goes from a screened look to a negative “x-ray”

look when varying opacity. Object is still opaque.
BlendTypeEnum.NormalBlack Goes from a normal look to entirely black when

varying opacity. Object is still opaque.
Notes

15

glState: CustomBlend Class

More detailed information can be found at
http://www.opengl.org/documentation/specs/man_pages/hardcopy/GL/html/gl/
blendfunc.html

A nice comparison chart of how the various blends look can be found at:
http://www.zanir.szm.sk/opengl/obrazky/011_blending_big.JPG
and is reprinted here with Marek Mizanin’s permission.

See Also
glElement3D Class

16

glState: IgnoreFog Class

IgnoreFog Class
If fog is on, this will render the element as if no fog exists.

Notes
Setting fog is a glSpace-level application and originally affected all elements globally
in RB3D. This glState can tell a glElement3D to render itself as if the fog isn’t there.
This will make an element that ignores fog appear to sit “on top” of the fog like so:

Even though an object ingores fog, it still obeys occlusion with other objects, fogbound
or not.

This glState is automatically added and updated whenever you set glElement3D.
IgnoreFog to True or False.

See Also
glElement3D Class, glSpace Class

Both either have IgnoreFog=False or
no IgnoreFog state has been set

The right object has IgnoreFog=True

17

glState: NullShader Class

NullShader Class
Renders an element without any lighting.

Notes
NullShader used to be the domain of Object3D — now it encompasses all
glElement3Ds as well. The effect is still the same: the object will be fully-lit and appear
fl at.

This glState is automatically added and updated whenever you set glElement3D.
NullShader to True or False.

See Also
glElement3D Class

18

glState: RenderBackFaces Class

RenderBackFaces Class
Renders an element’s both forward- and backward-facing polygons

Notes
RenderBackFaces used to be the domain of Object3D — now it encompasses all
glElement3Ds as well.

This glState is automatically added and updated whenever you set glElement3D.
RenderBackFaces to True or False.

See Also
glElement3D Class

19

glState: RenderAsFlatPolygons Class

RenderAsFlatPolygons Class
Renders an element by ignoring vertex normals.

Notes
When this is set to True, an object is rendered by ignoring vertex normals. This results
in all polygons rendered as fl at faces, as if the object were made of crystal.

GL’s default is to render all objects implicitly as RenderAsFlatPolygons = False.

This glState is automatically added and updated whenever you set glElement3D.
RenderAsFlatPolygons to True or False.

RenderAsFlatPolygons is applied “bottom-up,” so to speak: see the Nullshader class
for more information.

See Also
glElement3D Class

RenderAsFlatPolygons = False RenderAsFlatPolygons = True

20

glState: RenderAsPoints Class

RenderAsPoints Class
Renders an element only as vertex points.

Methods
Name Parameters Description
Constructor s As Boolean,

pointSize As Single
= 1.0

Parameter s turns on or off point
rendering (True = on). pointSize
is the size (in pixels) of each point
rendered.

SetPointSize size As Single Changes the size of each point (in
pixels)

Notes
I don’t know why point size is a Single and not an Integer, but that’s what OpenGL
wants.

Vertex points are NOT rendered in 3D — that is, they don’t appear to shrink the further
away from the camera they are. They are basically 2D constructs and will render all
points at the same size regardless of depth.

Lighting still affects the points, so that points from a polygon facing away from a light
source will be darker than those whose polygon faces the light. If you want a uniform
non-shaded look, set the element’s NullShader to True.

RenderAsPoints trumps the Wireframe glState, so you cannot have both active at the
same time.

WARNING: OpenGL 3.0 has deprecated the setting of point sizes. If that happens,
setting the point size will cease to work.

See Also
glElement3D Class, Wireframe Glstate class

21

glState: TrimeshScaled Class

TrimeshScaled Class
Updates vertex normals on an object if scaled.

Methods
Name Parameters Description
Constructor s As Boolean,

scaleVectorDirty As
Boolean = False

Parameter s turns on or off vertex
normal updating (True = on). If set
to True, scaleVectorDirty informs
this state that the object has been
scaled

Notes
This class is automatically added if a glElement3D is scaled. What it does is
recalculate vertex normals on a scaled object so that the lighting remains consistent
— without normalized vertex normals, the lighting on the object would be thrown off
and look wrong.

However, turning this off after a scale might make sense from an artistic point of view,
hence the ability to turn it off.

Calling glElement3D.Scale or glElement3D.ScaleVector will automatically add a
TrimeshScaled to the list of glStates stored in glElement3D.StateStack.

See Also
glElement3D Class

22

glState: Wireframe Class

Wireframe Class
Renders an element as a wireframe

Methods
Name Parameters Description
Constructor s As Boolean,

renderBack As
Boolean,
lineWidth As Single
= 1.0

Parameter s turns on or off
point rendering (True = on). If
renderBack is True, then any
backfacing polygons will render as
a wireframe, otherwise they’ll be
culled. lineWidth sets the widht of
the line (in pixels)

SetFacing face As Integer Sets which faces are rendered as a
wireframe. Use the self-explanatory
constants below:
GL_FRONT
GL_FRONT_AND_BACK
GL_BACK

SetLineWidth width As Single Changes the width of the line
drawn (in pixels).

Notes
This used to be the domain of the RB3DSpace class — now it encompasses any
glElement3D.

I don’t know why line width is a Single and not an Integer, but that’s what OpenGL
wants.

Like vertex points, the lines making up the wireframe are NOT rendered in 3D — that
is, they don’t appear to shrink the further away from the camera they are. They are
basically 2D constructs and will render all lines at the same size regardless of depth.

Lighting still affects the wireframe, so that lines from a polygon facing away from a
light source will be darker than those whose polygon faces the light. If you want a
uniform non-shaded look, set the element’s NullShader to True.

RenderAsPoints trumps the Wireframe glState, so you cannot have both active at the
same time.

WARNING: OpenGL 3.0 has modifi ed the setting of line widths so that any value
greater than 1.0 will generate an INVALID_VALUE error.

See Also
glElement3D Class, RenderAsPoints Glstate class

23

glState: GlowEnabled Class

GlowEnabled Class
Informs the renderer if this object emits a glow or not.

Notes
This is automatically added to a glElement3D whenever the boolean glElement3D.
GlowEnabled is set. If True, then this glElement3D is rendered as part of a separate
glow pass.

This class works in conjunction with glSpace.GlowEnabled. If the glSpace.
GlowEnabled is set to True, then a separate glow rendering pass is made, rendering
all glElement3Ds with GlowEnabled=True into an overlay texture which is blended atop
the fi nal render.

By default, all glElement3Ds are implicitly understood to have GlowEnabled=True, so
you have to explicitly turn it off if you don’t want a glElement3D to contribute to the
glow pass.

Enabling glow is a rather expensive pass that can cut your framerates by a third or
more. The fewer objects that can emit a glow, the better, but it will still be expensive.

See Also
glElement3D Class, glSpace Class, VertexProgram Class, ShaderProgram Class,
GLSLprogram Class

GlowEnabled=False GlowEnabled=True

24

glState: RadialBlurEnabled Class

RadialBlurEnabled Class
Informs the renderer if this object emits a radial blur.

Notes
This is automatically added to a glElement3D whenever the boolean glElement3D.
RadialBlurEnabled is set. If True, then this glElement3D is rendered as part of a
separate radial blur pass.

This class works in conjunction with glSpace.RadialBlurEnabled. If the glSpace.
RadialBlurEnabled is set to True, then a separate radial blur rendering pass is made,
rendering all glElement3Ds with RadialBlurEnabled=True into an overlay texture which
is blended atop the fi nal render.

By default, all glElement3Ds are implicitly understood to have
RadialBlurEnabled=True, so you do have to explicitly turn it off if you don’t want a
glElement3D to contribute to the radial blur pass.

The radial blur is automatically applied from the center of the window outward — there
are currently no settings to affect the origin or direction of the blur.

Enabling radial blur is a rather expensive pass that can cut your framerates by a third
(though slightly better than glowEnabled). The fewer objects that can emit a radial
blur, the better.

See Also
glElement3D Class, glSpace Class, VertexProgram Class, ShaderProgram Class,
GLSLprogram Class

RadialBlurEnabled=False RadialBlurEnabled=True

25

glState: VertexProgram Class

VertexProgram Class
Creates a low-level vertex shader

Properties

Name Parameters Description
Constructor s As Boolean,

f As FolderItem
If true, s turns on the vertex program.
f should be a text fi le of MacRoman
encoding that contains a valid vertex
program.

Constructor s As Boolean,
code As String
= “”

Same as fi rst, but allows to creation
of an empty vertex program to be
fi lled later.

SetEnvironmentParameters index As Integer,
X As Single,
Y As Single,
Z As Single,
W As Single

Sets program environment
parameters. Index is the parameter
reference and X, Y, Z, W are values
that can pass values into a program.

SetLocalParameters index As Integer,
X As Single,
Y As Single,
Z As Single,
W As Single

Sets program local parameters.
Index is the parameter reference and
X, Y, Z, W are values that can pass
values into a program.

Name Type Description
Program String Text for a vertex program

Methods

Notes
The use of this class requires OpenGL 1.4 or greater. If not found, then the class will
fail to be created silently. This is NOT GLSL.

You can set the state to be either on or off (ie: true or false), as well as pass in a fi le or
string that is the vertex program itself. Note that using this will completely supplant the
vertex operations normally performed, such as:
• matrix applications
• automatic normalization of vertex normals
• texture coordinate generation
• per-vertex lighting
This Glstate does NOT automatically get added as of now -- it must be added
manually via
glElement3D.AddState or directly to it’s stateStack dictionary, if you please.

26

glState: VertexProgram Class

The constructor for a VertexProgram is of the syntax New VertexProgram([NAME],
[PROGRAM]), where NAME is a unique identifi er (glStateStack is a Dictionary, and
you can have more than one vertex program running). PROGRAM is a string that
holds the vertex program itself.

To discuss how to create vertex programs is beyond the scope of this document. You
can fi nd information online:
ARB Fragment Program spec - http://oss.sgi.com/projects/ogl-sample/registry/ARB/
vertex_program.txt
http://www.nvidia.com/object/feature_vertexshader.html

The good news about Vertex- and ShaderPrograms is that they’re “compiled” by
OpenGL — loading in any examples found online should work as-is, without the need
to modify the code into some sort of REALbasic-friendly format.

Examples
Load a vertex program from a text fi le and store it in an object’s glStatestack. The
program will automatically be run whenever that object’s ChangeStates method is
called.

f = GetFolderItem(“vertexInterpolate.vp”)
Object.AddState(“VertexProgram”, New VertexProgram(true, f))

See Also
ShaderProgram Class

27

glState: ShaderProgram Class

ShaderProgram Class
Creates a low-level fragment (ie: texture) shader

Properties

Name Parameters Description
Constructor s As Boolean,

f As FolderItem
If true, s turns on the shader
program. f should be a text fi le of
MacRoman encoding that contains a
valid vertex program.

Constructor s As Boolean,
code As String
= “”

Same as fi rst, but allows to creation
of an empty shader program to be
fi lled later.

SetEnvironmentParameters index As Integer,
X As Single,
Y As Single,
Z As Single,
W As Single

Sets program environment
parameters. Index is the parameter
reference and X, Y, Z, W are values
that can pass values into a program.

SetLocalParameters index As Integer,
X As Single,
Y As Single,
Z As Single,
W As Single

Sets program local parameters.
Index is the parameter reference and
X, Y, Z, W are values that can pass
values into a program.

Name Type Description
Program String Text for a shader program

Methods

Notes
Adds the ability to use OpenGL’s low-level shader programs (again: this is NOT
GLSL). This is similar to VertexProgram, except that this affects:
• texture application
• material color
• fog
ARB Fragment Shader spec - http://oss.sgi.com/projects/ogl-sample/registry/ARB/
fragment_shader.txt

See Also
VertexProgram Class

28

glState: GLSLprogram Class

GLSLprogram Class
Creates a program object for GLSL that can apply GLSLshaders.

Methods
Name Parameters Description
AttachShader shader As

GLSLshader
Attach given shader to this
prograam. More than one shader
can be attached at a time.

DeleteShader shader As Integer Delete the shader passed in by
GLSLshader.Handle.

DetachShader shader As Integer Detach the shader passed in by
GLSLshader.Handle.

Disable Turn off program by returning
control either to the fi xed-function
pipeline or the last active program
run.

GetAttachedShaders shaders() As
GLSLshader

Retrieves an array of all
GLSLshaders attached to this
program.

GetAttachedShaders shaderHandles() As
Integer

Retrieves an array of handles for
all GLSLshaders attached to this
program.

GetAttributeInfo location As Integer,
Byref name As String,
Byref type As Integer,
Byref size As Integer

Returns an attribute by slot, passing
out the name, type, and size of the
attribute.

GetAttributeLocation name As String Checks if the passed name is a valid
attribute variable location Returns -1
if invalid, else returns an integer.

GetProgramLog Returns a string of the information
log generated at compile time. If
there are any errors, they’ll be listed
here, otherwise it will return an
empty string. Useful for debugging.

GetUniformInfo location As Integer,
Byref name As String,
Byref type As Integer,
Byref size As Integer

Returns an uniform variable, passing
out the name, type, and size of the
attribute.

GetUniformLocation name As String Checks if the passed name is a valid
uniform variable location Returns -1
if invalid, else returns an integer.

29

glState: GLSLprogram Class

Name Parameters Description
IsValidProgram Returns true if this is a runnable

program. NOTE: This is slow to run!

LinkShader Link all attached shaders to this
program

SendUniform [location As Integer |
name As String],
x As [Double | Integer],
[y As [Double | Integer],
z As [Double | Integer],
w As [Double | Integer]]

Sets one to four uniform variables.
You may use the variable’s name or
(more advanced) it’s location handle
for the fi rst parameter.

You can either specify all integers or
doubles, but not a mixture of both.

SendUniform [location As Integer |
name as String],
matrix As MemoryBlock,
transp As Boolean =
False,
size As Integer = 4

Sets a single or more matrices. You
may use the variable’s name or
location handle. transp indicates if
the data needs transposition: true
= row major order, false = column
major. size = number of matrices
should be updated.

SetUniform name As String,
x As [Double | Integer],
[y As [Double | Integer],
z As [Double | Integer],
w As [Double | Integer]]

Like SendUniform, but holds the
data until the glElement3D that the
program is attached to is drawn.
The difference is that SendUniform
immediately tries to set the variable,
while SetUniform waits.

SetUniform name as String,
matrix As MemoryBlock,
transp As Boolean =
False,
size As Integer = 4

Sets a single or more matrices.
Same functionality as SendUniform,
but it waits until the glElement3D that
the program is attached to is drawn
before sending the data.

SetAttributeLocation name As String,
location As Integer

Assign your own attribute to a
specifi c location.

Use Activate this program for use.

Validate Checks to see if the program can be
run. You can retrieve any errors by
making a call to GetProgramLog.
NOTE: Validation is slow, so don’t
use in a main loop! It’s for debugging
purposes.

30

glState: GLSLprogram Class

Notes
This creates program objects for OpenGL’s Shading Lanuage, GLSL, and requires at
least OpenGL 2.0 or the appropriate ARB extensions. To go into a full discussion on
how to program in GLSL is beyond the scope of this document, but copious examples
can be found online.

WARNING: As soon as you use GLSL on an object, you bypass the built-in rendering,
meaning you override all glStates that affect rendering such as smooth shading or
wireframes. This is very much an either/or situation: either use the built-in renderer, or
use GLSL and write ALL the shading code yourself!

There is a companion class dedicated to GLSLprogram: GLSLshader. If a
GLSLprogram is a program you run, then GLSLshader can be considered the code
itself (or GLSLprogram is an application, and GLSLshaders are the Methods, in
REALbasic parlance). You can attach as many GLSLshaders to a GLSLprogram (at
least up to whatever limit your GPU can handle), even delete shaders from a program
on the fl y.

Even though GLSLprogram is listed as a subclass of glState, by no means do you
have to attach it to a glElement3D — The class itself has all the hooks necessary for
it to be used outside of any glElement3D. This is done to give greater fl exibility to the
user on how GLSLprograms are used. Note there are two ways of setting uniform
variables: if attached within a GLelement, then SendUniform is used; if outside,
SetUniform is used (note the boldface).

The appropriate ARB equivalents will be called if the extension is available (for
example, a computer might not be OpenGL 2.0 savvy, but has the ARB extensions as
a separate library), as well as some NV-equivalent extensions.

Examples
As mentioned above, a full discussion on how to use GLSL is impractical. However,
this block of code shows how to use GLSLprogram, creating and attaching
GLSLshaders. The example loads a vertex shader and two fragment shaders from
text fi les and places them in a program object.

Dim Prog As New GLSLprogram
Dim toonVert, toon1frag, toon2frag As GLSLShader

// Create GLSLshaders from text fi les
// Assumes MacRoman encoding on the text fi les
f = GetFolderItem(“toon.vert”)
toonVert = New GLSLShader(GL_VERTEX_SHADER, f)
f = GetFolderItem(“toon.frag”)
toon1frag = New GLSLShader(GL_FRAGMENT_SHADER, f)
f = GetFolderItem(“toon2.frag”)

31

glState: GLSLprogram Class

toon2frag = New GLSLShader(GL_FRAGMENT_SHADER, f)

// Attach shaders to Prog
Prog.AttachShader(toonVert)
Prog.AttachShader(toon1frag)
Prog.AttachShader(toon2frag)

// grp is a glGroup3D

grp.AddState(“Toonify”, Prog)

If the program is created correctly, it will be automatically run the next time grp.
ChangeStates is called and be deactivated upon the call of grp.RestoreStates.

Once loaded, you may retrieve the handles of what shaders are attached like so:

Dim shaders(-1) As Integer
GetAttachedShaders(shaders)

This will populate the shaders array with the handles.

If there are any uniform attributes that need to be set, you can do the following
example, which sets an fragment attribute named “texture” to 0:

grp.SetUniform(“Texture”, 0)

Note that if the above code is for a GLSLprogram attached to a glElement3D, that
uniform variable will NOT be set immediately, but held by the GLSLprogram and
instantiated when that glElement3D is drawn. This is due to the way GLSLprograms
are woven into the RB3D-like syntax: a glElement3D must fi rst activate the
GLSLprogram and bind any textures before binding the uniform variables.

If you’ve instantiated your GLSLprogram outside of any glElement3D, then you can
immediately bind a uniform attribute directly by using:

grp.SendUniform(“Texture”, 0)

If you suspect the program needs debugging, you can have it check itself and print out
the results (the results will be empty if the code is valid):

Prog.Validate // Error checks program
MsgBox Prog.GetProgramLog // Prints log results

See Also
glElement3D Class, GLSLshader Class

32

glState: GLSLshader Class

GLSLshader Class
Creates a shader object to be attached to a GLSLprogram.

Methods
Name Parameters Description
Constructor type As Integer,

f As FolderItem
Given a type of program to create
(currently only GL_VERTEX_
SHADER or GL_FRAGMENT_
SHADER or the ARB equivalents)
and a text fi le with a valid shader
code, create the program.

Constructor type As Integer,
code As String

Same as above, except one can
pass in a string with shader code.

GetShaderLog Returns a string of any compile
errors. Primarily a debugging tool.

GetSourceFromOpenGL Retrieves the source code directly
from OpenGL and returns a string.

Notes
This function serves a dual purpose: it encompasses the creation of either a vertex- or
fragment-shader object. If a handle could not be created (for example, there’s no more
GPU memory left), an error message will be displayed.

Currently, only vertex or fragment (ie: texture) objects can be created, but it’s possible
that in the future, new shader types could appear.

A full discussion on how to use is beyond the scope of this document, but a search on
the Web for “GLSL” should bring up a treasure trove of information. The good news
is that any code examples that can be found can be imported into GL as-is, with no
need for converting the C-styled syntax into REALbasic, as OpenGL handles parsing
automagically.

Like GLSLprogram, there is no direct support for generic attributes save for the
available Declares.

There isn’t a need to save a GLSLshader once loaded in memory unless that shader
has been deleted from OpenGL itself and needs to be reinstated. Thus if you know a
shader is to remain in GPU memory for the duration of your app, you might consider
loading a GLSLshader into a local variable inside some sort of init function and letting
it fall out of scope once initialization is done.

See the example in GLSLprogram for a simple example on how to use.

See Also
GLSLprogram Class

33

glBounds3D Class

glBounds3D Class
Handles bounds for each glElement

New Methods
Name Description
ComputeAABB Byref min As

glVector3D,
Byref max As
glVector3D

 Determine world axes-aligned
bounding box by transforming
mABB by mElement’s orientation.

ComputeBoundsGroup grp As
glGroup3D

Finds the farthest points along the
cardinal axes of the given group
to compute bounds. Note this is
a rather expensive operation to
run, as it loops through EVERY
glElement3D within the group to
determine the bounds.

ComputeBoundsObject3D grp As
glGroup3D,
vScale As
glVector3D

Finds the farthest points along the
cardinal axes to compute bounds.
Note this is a rather expensive
operation to run, as it loops
through EVERY glTrimesh within to
determine the bounds.

LineSegmentAABBIntersection pt1 As
GLVector3D,
pt2 As
glVector3D

Tests to see if a line segment
intersects an axis-aligned
bounding box. This is different from
LineSegementIntersection, which
tests against a bounding sphere.

Notes
glBounds3D retains the same functionality as its counterpart.

A bounds can be attached to any glElement3D. One difference from RB3D is that
bounds are not updated with the host element, just whenever a collision test is called
or if a user accesses one of its computed properties.

Currently, there’s lots of work being done under the hood to compute a correct bounds
— every vertex inside the host element is tested in order to get the tightest fi t. This
could mean a temporary loss in performance if a bounds is added on the fl y for a large
group of elements contained in either a glObject3D or glGroup3D. Just like RB3D, it
would be better if the GLbounds3D is not attached to a glElement3D directly.

One might notice that it’s quite top-heavy with private properties. Many of these
properties look towards future expansion, such as collision tests with object-oriented
bounding boxes or even collision meshes.

34

glBox Class

glBox Class
Creates a box centered at the origin.

Properties
Name Type Description
Width Double The width of the box along the X-axis

Height Double The height of the box along the Y-axis

Depth Double The depth of the box along the Z-axis

staticMesh Boolean If True, then compile the box in OpenGL
for faster redraw. If false, the box will be
redrawn every glSpace update.

Name Parameters Description
Constructor w As Double,

h As Double,
d As Double,
staticMesh As
Boolean = TRUE

Creates a box from the passed
parameters.
w = width d = depth
h = height

Set staticMesh TRUE if object will not
change shape.

Methods

Notes
Any textures applied will be applied to all six faces of the box. If you want different
textures for each side, you’ll need to roll your own class.

This class also uses OpenGL display lists to create the box.

Examples
Creates a new box with a width of 1, a height of 2, and a depth of 3.

Dim box As glElement3D
box = new glBox(1,2,3)

See Also
glElement3D Class

width=1

he
ig

ht
=2

de
pth

=3

1

0.5

1.5

35

glColorList Class

Notes
This class adds to the functionality of its counterpart by allowing one to affect a range
of values.

See Also
glTrimesh Class

glColorList Class
Holds the vertex color list for a glTrimesh

New Properties

Name Type Description
AddRGBToAll Red As Integer,

Green As Integer,
Blue As Integer,
RangeLow As
Integer = -1,
RangeHigh As
Integer = -1

Adds the passed RGB color to all colors
in the list. The parameters take on values
of 0 to 255.

What’s new: if a range of indices is set
between RangeLow and RangeHigh,
perform add on range given. The defaults
are -1: do not do a range update.

Copy other As
GLcolorList,
RangeLow As
Integer = -1,
RangeHigh As
Integer = -1

Copies the passed ColorList into the
current list.
If other is smaller than me, then only
copy up to size of other.
If other is bigger than me, only copy up to
size of me.
If a range of indices is set between
RangeLow and RangeHigh, only perform
copy on range given. The defaults are -1:
do not do a range update.

Updated Methods

Name Type Description
Count Returns the number of vertices minus

one for a zero-based count.

36

glElement3D Class

glElement3D Class
The base class for all objects

New Properties

Name Type Description
CustomBlend Boolean If true, allows this element to modify

how it is rendered. Adds a CustomBlend
glState to this element if true. See glState
for more information.

ElemType ElementType Identifi es what type of element this is:
glElement3D, glObject3D, glGroup3D,
glLight3D, glCamera

GlowEnabled Boolean If true, element will cast a glow (if
glSpace.GlowEnabled is True). Adds a
GlowEnabled glState to this element.

GLpickName Integer Used by GL to determine if this element
has a mouse cursor over it. This is set by
GL — do NOT set this by hand.

glStateStack Dictionary Holds all the glStates attached to this
element. Do not modify manually!

IgnoreChangeStates Boolean If true, ignores updating and restoring of
any glStates attached.

IgnoreFog Boolean If true, ignores fog settings, rendering
this element as if no fog existed. Adds an
IgnoreFog glState to this element.

IgnoreTextureLighting Boolean If true, ignores setting any material
color by not calling GLelement.
UpdateTextureLighting

IgnoreUpdate Boolean If true, ignores calling glElement3D.
Update, thus bypassing any
transformations to this element.

KeyName String The name is used primarily for reference
counting and is assigned automatically.

Material() Array of Materials Object shaders attached to this element.
Rendering of Materials starts from index
0 as the base texture on up.

Matrix Memoryblock Holds the transform matrix for this
element: it’s translation/rotation/scale.
This is a 4x4 matrix.

37

glElement3D Class

Name Type Description
NullShader Single If true, ignores light settings and

renders at full brightness. Adds a
NullShader glState to this element.

Opacity Single Sets the level of transparency of this
element. 0.0 = invisible, 1.0 = fully
opaque.

Parent glElement3D Link to the parent (if any) for this object.

RadialBlurEnabled Boolean If true, object will cast a radial blur (if
glSpace.RadialBlurEnabled is True).
Adds a RadialBlurEnabled glState to
this element. See glState for more
information on how to use.

RenderAsFlatPolygons Boolean If true, Renders this element with no
normals (produces a faceted look).
Adds a RenderAsFlatPolygons glState to
this element if true. See glState for more
information on how to use.

RenderAsPoints Boolean If true, Renders this element only as
vertex points. Adds a RenderAsPoints
glState to this element if true. See
glState for more information on how to
use.

Wireframe Boolean If true, Renders this element as
wireframes. Adds a Wireframe glState to
this element if true. See glState for more
information on how to use.

Name Parameters Description
ChangeStates Updates all glStates attached to this

element. Will permanently change
OpenGL’s state unless RestoreStates is
called.

Draw renderingPass
As UInt8 = 1,
ViewMatrix As
MemoryBlock

Draws the element to the scene based
on the current viewpoint (ViewMatrix).

New Methods

38

glElement3D Class

Name Parameters Description
GetLineWidth Returns the line width as a Single.

GetPointSize Returns the point size as a Single.

KillState key As String Manually sets a glState for
deletion from this element.

RestoreStates renderingPass As
UInt8 = 1

Undoes changes made by
ChangeStates.

SetCustomBlend value As Boolean,
blendType As
Integer = 0

Value sets whether CustomBlends
are on or off. Setting blendType
will access preset values for how
this element will be rendered into
a scene.

SetLineWidth width As Single Sets a line width for this element.
Useful for wireframe views or
glLines. Note that the line width is
similar to Graphics.PenWidth and
isn’t affected by distance from the
glCamera.

SetParent grp As glGroup3D Store a pointer to the passed
parent group. This is set
automatically.

SetPointSize size As Single Sets the vertex size for
this Element3D. Useful for
RenderAsPoints or glPoints. Note
that the vertex size isn’t affected
by distance from the glCamera.

Update Transforms this element in space
via position, rotation, and scaling,
and stores them in Matrix.

UpdateEulerOrientationAbsolute p As Double,
y As Double,
r As Double

Treats the given pitch, yaw, and
roll as an absolute orientation.
This actually resets the element’s
current orientation back to it’s
default orientation before applying
the new rotation.

UpdateEulerOrientationRelative p As Double,
y As Double,
r As Double

Adds the given pitch, yaw, and roll
values to the current pitch, yaw,
and roll of this element.

39

glElement3D Class

Notes
glElement3D retains the same functionality and is still the base class for all 3D objects.

However, There are new properties and methods added which help control object
rendering to a fi ner degree than ever before. By adding the control at the Element
level, one can now control rendering at the Group and Trimesh levels rather than
only at the Object3D level, which is what RB3D currently allows. This also means
that while Groups can en masse affect other GLelements contained within it, each
GLelement within can choose to override the Group’s settings.

Because of the new glStates, certain states will override other states. For example, it
makes no sense to set both RenderAsFlatPolygons and Wireframe to True — in this
case Wireframe overrides polygons. Similarly, RenderAsPoints overrides Wireframe.
See glState class or the Introduction to glStates section for more information.

There are also a few important booleans that, when enabled, will speed up rendering
even further by ignoring things such as object transformations (ie: position/rotation/
scale), texture and lighting, and an glState changes. This allows one to use
glGroup3D to group like-styled objects — recall that OpenGL is a state machine, so
if, say, you set texture and lighting at the group level, there’s no need to set it for each
element within that group.

Finally, note that the Material property has been moved out of the trimesh and
object3D level up to the element level. This allows for some unique rendering
opportunities that would be harder to accomplish in RB3D. Also notice that the
Material property is an array — you can apply multiple textures per element up to the
limit of your graphics card. Note also that certain combinations are not allowed, for
example: you cannot apply a texture to a glGroup3D (but you can apply a material
solely to affect lighting, an example of which can be found in the Examples section).

Name Parameters Description
UpdatePosition X As Double,

Y As Double,
Z As Double

Sets the position of this element to
the passed XYZ values.

UpdatePositionWorld Modify element’s Position property
to be in world coordinates.
This will be reset back to local
coordinates during the next call to
Update.

40

glElement3D Class

Examples
Set a glElement3D to render as a null-shaded wireframe with 50% opacity, ignoring
all fog settings. The wireframe will also be rendered with 2-pixel-wide lines. Assumes
mElem has already been initialized elsewhere:

mElem.NullShader = True
mElem.WireFrame = True
mElem.SetLineWidth = 2
mElem.Opacity = 0.5
mElem.IgnoreFog = True

Set mElem to render itself as a “color dodge” effect, adding its RGB values to what
has already been rendered in the scene. This makes the element appear to glow
brighter.

mElem.SetCustomBlend(True, BlendTypeEnum.ColorDodge)

Set mElem to remove NullShader from its glState. Note that you can also do this by
setting NullShader = False, but this will force removal of said glState, thus improving
performance. See glState class or the Introduction to glStates section for more
information.

mElem.KillState(“NullShader”)

The next example sets mElem to NOT emit a glow when rendered to the scene. Note
that turning on/off glow is handled at the glSpace level, but a GLelement can choose to
override that. This is a good example of why a simple boolean won’t work for glStates
such as GlowEnabled: if mElem is a glGroup3D, then turning on glow for the group
wouldn’t affect the objects within, as booleans default to false. See glState class or the
Introduction to glStates section for more information.

mElem.GlowEnabled = False

There are a number of ways to handle updating of rotation and position. While you
can choose to update them in the classic manner via Pitch/Yaw/Roll and Postion.X,
Postion.Y, Postion.Z, there are a few convenience functions that make it easier to type
a series of transforms all in one function rather than having to do it separately.

The next example resets the current orientation back to its default. You can also
do this via mElem.Orientation.SetRotateAboutAxis(0,1,0,0). They’re
functionally the same thing:

mElem.UpdateEulerOrientationAbsolute(0,1,0)

This sets element’s current Position in an easier-to-use function:

41

glElement3D Class

mElem.UpdatePosition(5,1,0)

The above is exactly the same as

mElem.Position.X=5
mElem.Position.Y=1
mElem.Position.Z=0

The next example shows how to set properties at the group level and allow it to
control all elements within that group rather than having each individual element fend
for itself.

The code takes a glTrimesh and clones it 10 times, placing each clone within a
glGroup3D. The group has a global material setting that sets the default specular
color and shininess of every object within it. Each clone is told to ignore its own light
settings, meaning it will use the group’s settings. This boosts rendering speeds by
skipping lighting code that would normally be run for each clone.

Dim tm As glTrimesh
// assume obj creation code here...

Dim mGrp As glGroup3D = New glGroup3D
mGrp.Material.Append New glMaterial
mGrp.Material(0).SpecularColor = RGB(127, 127, 127)
mGrp.Material(0).Shininess = 4.0

For i = 0 to 9
 mGrp.Append tm.Clone
 tm(i).IgnoreTextureLighting = True
Next

If we add the following line after the above code, then clone(5) will use its own lighting
settings, assuming that the clone has at least one texture applied to it. This is a good
example of how setting rendering information at the element level can be a powerful
method.

mGrp.Item(5).IgnoreTextureLighting = False

See Also
glState Class, glTrimesh Class, glObject3D Class, glGroup3D Class, glLight3D Class,
glCamera Class, glBounds Class, glLines Class, glLineLoop Class, glLineStrip Class,
glPoints Class, glState Class, glMaterial Class, glSpace Class

42

glGroup3D Class

glGroup3D Class
A container class to group other elements.

New Methods

Name Parameters Description
Clone Returns a glGroup3D that’s a clone of this

group.

ReleaseData Do some housecleaning and
bookkeeping when someone decides
to delete this group, removing all items
stored within.

UpdatePositionWorld Used to update the absolute coordinates
of the group. This is an internal function
and need not be called manually.

Notes
The primary differences to the user is that a GLgroup can clone itself and can have
glStates attached to it, meaning you can set the contents of a GLgroup to be, say, null
shaded en masse instead of one object at a time.

Another difference is that a glMaterial can be attached to a glGroup3D by way of the
glElement3D class. By material, this does not mean texture — GL will not render a
texture onto a group and will simply ignore such data.

What it will do is use the lighting information that’s attached to a material — the
ambient, diffuse, and specular settings — and apply it to the group. If there are
elements within a group that have their lighting disabled, said element will use the
group’s settings. Because of this, you can use groups to encapsulate like-styled
objects, setting properties at the group level rather than for each individual object
within — this will result in a boost in framerate. An example of this synergy can be
found in the glElement3D examples.

A fi nal difference is that elements within a group will transform properly with the group,
translating, rotating, and scaling as expected. This differs from RB3D in that RB3D
only handled translation and rotation, and even then it doesn’t do a proper transform
which can lead to transform errors. This may mean that any group behavior that you
had worked out before might not work properly in GL.

When a glGroup3D is created, it always takes its center to be at the origin (0,0,0).

Examples
Load a glGroup3D with 10 glTrimesh clones, setting the glGroup3D’s opacity to 50%,

43

glGroup3D Class

thus adding translucency to the entire group of glTrimeshes.

Dim grp = New glGroup3D
For i = 0 to 10
 grp.Append tm.Clone // Assume tm is a valid glTrimesh
Next

 grp.Opacity = 0.5

Continuing from the previous code example, set the 5th clone’s opacity to 100%, thus
ignoring the overarching grp.Opacity level:

grp.Item(5).Opacity = 1.0

See glTrimesh for another example of group dynamics.

Groups are going to be your best bet in keeping the number of OpenGL state changes
down. The next example shows how to set up glStates globally by setting it at the
group level and ignoring it at the object level:

grp.NullShader = True // NullShader creates a glState
grp.GlowEnabled = True // GlowEnabled creates a glState
For i = 0 to 10
 grp.Item(i).ignoreChangeStates = True
Next

What happens in the above code is that two glStates are attached to grp. In the for
loop, each item is set to ignore any glStates it might contain. The grp code above will
render faster than if we set the glStates for each individual objects:

For i = 0 to 10
 grp.Item(i).NullShader = True
 grp.Item(i).GlowEnabled = True
Next

See Also
glState Class, glTrimesh Class, glObject3D Class, glLight3D Class, glCamera Class,
glState Class, glMaterial Class, glSpace Class

44

glLight3D Class

glLight3D Class
Defi nes global lights within the glSpace

New Properties

Name Type Description
AmbientColor Color The color of the ambient light

ConstantAttenuation Double constant attenuation factor

DiffuseColor Color The color of the diffuse light. Does not
need to be manually adjusted. Instead,
use the LightColor property.

LinearAttenuation Double linear attenuation factor

QuadraticAttenuation Double quadratic attenuation factor

SpecularColor Color The color of the specular light

SpotlightAngle Double The half-angle (in degrees) for the cone
of a spotlight. This is the angle between
the axis of the cone and a ray along the
edge of the cone. Valid values are 0.0 to
90.0. A value of 180.0 turns the spotlight
back into a point light.

SpotlightExponent Double How concentrated the light is. The light’s
intensity is highest in the center of the
cone.

Notes
This class exposes nearly every parameter possible for lights under OpenGL.

The three attenuation properties basically break apart the components of the
glLight3D.Attenuation property. In the real world, lights tend to fade in intensity with
distance. The formula used by OpenGL is

By default, ConstantAttenuation is 1.0 and both LinearAttenuation and
QuadraticAttenuation2 are zero. If you look at the above equation with a big fat “huh?”
you are not alone — I prefer not to think about it myself, but it’s there if you need to
simulate lighting to a fi ner degree.

1
ConstantAttenuation + LinearAttenuation + QuadraticAttenuation2

45

glLight3D Class

There are also two properties
specifi cally for spotlights. The
original RB3D only handles the
direction a spotlight is aimed. With
the newly-exposed properties, you
can now set the angle of the cone
as well as the falloff of said cone.
A diagram might better serve here.
To the right is how a spotlight works:

Note that in OpenGL, you’re allowed
a default of eight lights, possibly
more depending on your graphics
card. One is already used when GL
is started up. Keep in mind that each light added can adversely affect framerates. That
said, many 3D applications don’t use lights to create the illusion of lots of lights —
many are vertex color tricks, creative texture applications, or texture projections.

See Also
glMaterial Class, glSpace Class

Direction

SpotlightAngle

SpotlightExponent

A
tte

nu
at

io
n

(a
ffe

ct
s

lig
ht

 fa
llo

ff
fro

m
 s

ou
rc

e) Position

(affects light falloff from center)

46

glLines Class

glLines Class
Draws a series of line segments from an array of glVector3Ds

Properties

Name Type Description
VertexPairs() glVector3D Array of glVector3Ds describing a set of

line segments.

Name Parameters Description
Constructor vPairs() As glVector3D,

staticMesh As Boolean
= TRUE

Creates a series of line segments from
the passed vPairs array.

Set staticMesh TRUE if object will not
change line vertex positions.

Methods

Notes
The VertexPairs array must describe a set of line segments. Each two consecutive
glVector3Ds constitutes one line segment, and only a full set of two are drawn. If you
want to draw a continuous line segment, use glLineStrip or glLineLoop instead, as
they’re optimized for continuous line drawing. You may use glElement’s SetLineWidth
and GetLineWidth to set line width, but this is a 2-D construct, as the line width will
always be the same width regardless of how far away a line recedes from the camera.

If you set staticMesh=TRUE, then the object will be locked and be unmodifi able, which
allows GL to optimize it for faster rendering. If false, the object will be drawn anew
each time its Draw method is called, meaning you can modify the lines on-the-fl y.

Examples
Creates a new glLines object, positioning and placing it in the GLspace View.

Dim pairs(-1) As glVector3D
pairs.Append New glVector3D(0,0,-10)
pairs.Append New glVector3D(0,-2,-10)
Dim lines As New glLines(pairs)
lines.SetLineWidth = 3
lines.NullShader = True
View.Objects.Append lines

See Also
glElements Class, glLineStrip Class, glLineLoop Class, glVector3D Class

47

glLineLoop Class

glLineLoop Class
Draws a closed line shape from an array of glVector3Ds

Properties

Name Type Description
VertexPairs() glVector3D Array of glVector3Ds describing the

vertices of the closed line loop

Name Parameters Description
Constructor vPairs() As glVector3D,

staticMesh As Boolean
= TRUE

Creates closed line loop from the
passed vPairs array.

Set staticMesh TRUE if object will not
change line vertex positions.

Methods

Notes
The VertexPairs array describes the path of a line in a “connect-the-dots” fashion. The
shape will be automatically closed, connecting VertexPair(0) and the last VertexPair in
the array. See glLines notes for setting line width.

If you set staticMesh=TRUE, then the object will be locked and be unmodifi able, which
allows GL to optimize it for faster rendering. If false, the object will be drawn anew
each time its Draw method is called, meaning you can modify the lines on-the-fl y.

Examples
Creates a new glLineLoop object, positioning and placing it in the GLspace View.

Dim pairs(-1) As glVector3D
pairs.Append New glVector3D(0,0,-10)
pairs.Append New glVector3D(0,-2,-10)
pairs.Append New glVector3D(2,-2,-10)
pairs.Append New glVector3D(2,0,-10)
Dim lines As New glLineLoop(pairs)
lines.NullShader = True
View.Objects.Append lines

See Also
glElements Class, glLines Class, glLineLoop Class, glVector3D Class

48

glLineStrip Class

glLineStrip Class
Draws an open line shape from an array of glVector3Ds

Properties

Name Type Description
VertexPairs() glVector3D Array of glVector3Ds describing the

vertices of the open line loop

Name Parameters Description
Constructor vPairs() As glVector3D,

staticMesh As Boolean
= TRUE

Creates open line loop from the passed
vPairs array.

Set staticMesh TRUE if object will not
change line vertex positions.

Methods

Notes
This is similar to glLineLoop, except that it does not close the loop at the end, leaving
it open. See glLines notes for setting line width.

If you set staticMesh=TRUE, then the object will be locked and be unmodifi able, which
allows GL to optimize it for faster rendering. If false, the object will be drawn anew
each time its Draw method is called, meaning you can modify the lines on-the-fl y.

Examples
Creates a new glLineStrip object, positioning and placing it in the GLspace View.

Dim pairs(-1) As glVector3D
pairs.Append New glVector3D(0,0,-10)
pairs.Append New glVector3D(0,-2,-10)
pairs.Append New glVector3D(2,-2,-10)
pairs.Append New glVector3D(2,0,-10)
Dim lines As New glLineStrip(pairs)
lines.NullShader = True
View.Objects.Append lines

See Also
glElements Class, glLines Class, glLineLoop Class, glVector3D Class

49

glMaterial Class

glMaterial Class
Creates an object shader that contains color and texture properties

New Properties

Name Type Description
AmbientColor Color The ambient color component.

BlendStyle Integer How the material is to be applied to the
object.

HasAmbientColor Boolean If true, material has an ambient color

HasMask Boolean If true, material texture has an alpha
mask.

HasSpecularColor Boolean If true, material has a specular color.

IsClone Boolean Internal property used for reference
counting of materials.

KeyName String Internal property used for reference
counting of materials.

MappingStyle Integer How a texture is mapped to an object,
either by explicit UV coordinates or
generated by OpenGL.

Pitch
Yaw
Roll

Double Rotates texture along either the X-, Y-, or
Z-axis respectively (in radians)

Scale Double Applies a scale value to a texture. The
default is 1.0 (no scaling)

ScaleX
ScaleY
ScaleZ

Double Applies a scale value along the cardinal
axes. The default is 1.0 for all (no
distortion).

Shininess Double In conjunction with SpecularColor, sets
the specular highlight. A value of 0 means
the material isn’t shiny and has a large
highlight, a value of 128 means its very
shiny with a small specular highlight.

SpecularColor Color The color of the specular highlight.

Uoffset
Voffset

Double Shifts the texture by the U or V offset
given. The default is 0.0 for both.

50

glMaterial Class

Name Parameters Description
Bind index As Integer,

UVpointer As
Integer

Internal function which draws textures
atop a glTrimesh.

Clone Returns a clone of this material.

GetColorVector type As Integer Return the color as a GLvector rather
than as a Color. Type can be the
following constants:
glMaterial.kColorTypeAmbientMat
glMaterial.kColorTypeDiffuseMat
glMaterial.kColorTypeSpecularMat

Init Internal function used to set up a new
glMaterial.

InitTexture Internal function used to set up a new
texture.

Unbind Internal function used to clean up after
itself (if necessary).

New Methods

Notes
This class exposes more properties for materials than RB3D, adding controls for
ambient and specular colors.

Texture Manipulation
A more signifi cant addition is that each material carries its own transform matrix. What
this means is that you can not only translate the texture, but also rotate and scale
it without ever having to directly modify the trimesh’s UV coordinates (VertexUVs

51

glMaterial Class

property) as in RB3D. Keep in mind that a texture transform on a trimesh will be
imparted to all of the trimesh’s clones (if any). This is handy for creating, for example,
fl owing water (perform a texture translation via theU- and Voffset properties).

Blend Styles
The BlendStyle property dictates how a material is applied. The default is
GL_ MODULATE, which does a multiplication of the mesh’s base color and the
material’s lighting and texture paremeters. The styles really come into their own
when multiple materials are overlaid atop each other. Like layers in Photoshop, each
successive Material is put atop any others, with GLelement.Material(0) being the
bottommost layer. Opacity is affected by this, so plan accordingly.

It’s hard to put into words how each style affects the underlying layers, so here
are diagrams that show what some of the different styles look like, along with the
appropriate constant name to use for each style:

GL_MODULATE (default)
Multiplies material onto object

+ =
Object Material

GL_DECAL
Use an alpha-masked texture to apply to object

+ =
Object Material

GL_REPLACE
Replaces lit underlying with unlit color, and

overrides all lighting, like a NullShader effect

+ =
Object Material

GL_ADD
Adds to underlying color

(Photoshop screen-like effect)

+ =
Object Material

Mapping Styles
The MappingStyle property dictates if GL should use a trimesh’s UV coordinates or
generate its own when rendering textures. The default is GL_OBJECT_LINEAR,
which basically means the texture is applied using that trimesh’s own UV coordinates.
The reason you might want GL to generate UV texture coordinates is that would be
diffi cult to calculate on your own, such as simulating a refl ective surface on a car.

52

glMaterial Class

Original texture

GL_OBJECT_LINEAR
Texture rendered with object UV,

which means texture appears
“locked” to object .

GL_EYE_LINEAR
Texture projected like a slide
projector — image will slide

across surface as object moves.

GL_SPHERE_MAP
Treats texture as if it were a

spherical map encompassing the
object. Rarely used any more.

GL_REFLECTION_MAP
Needs six textures; only works

with GLcubemap class.
GL_NORMAL_MAP

glTrimesh.VertexColors warning
If you’ve set vertex colors on a glTrimesh and then add a glMaterial, the glMaterial
will overwrite any vertex colors. If you want the colors to blend through to affect the
textures, then you must apply a different blend style from the default.

Examples
Create a new glMaterial, set its blend style, and append it to a trimesh.

Dim mat0 as New glMaterial
mat0.BlendStyle = GL_MODULATE
tmsh.Material.Append mat0 // tmsh is a glTrimesh

Adds a new glMaterial to the above trimesh, this time with GL_ADD so that the new
material looks like it’s glowing on top of the fi rst material (mat0).

Dim mat1 as New glMaterial
mat1.BlendStyle = GL_ADD
tmsh.Material.Append mat1

If you now set Opacity from the last example, you will override the BlendStyle (see
Opacity notes). This example blends mat1 over mat2 at 25% opacity:

mat1.Opacity = 0.25

53

Thi next example scales a texture to twice it’s normal size. Note that what this means
is dependent on how the texture has been applied to the object in question. If the
object was a fl at square, then you would see the texture scale up with the origin at the
upper left corner (UV =0,1).

mat0.Scale = 2.0

In order to correct the scale to be at the center, we can use UV offsets:

mat1.Uoffset = 0.25
mat1.Voffset = 0.25

Scale above texture back to 1.0, then apply a counterclockwise 45º rotation, the origin
is again at the upper left corner. The reason we roll the texture along the Z-axis is
because the object’s forward-facing vector is along the +Z axis.

mat0.Scale = 1.0
mat0.Roll 0.7854

See Also
glElement Class, glCubemap Class, glTrimesh Class

glMaterial Class

54

Class heading glCubeMap Class

glCubeMap Class
Subclass of glMaterial that handles cube maps

Name Parameters Description
Constructor p As Picture Takes one picture and applies it to all

six faces of the cube map.

Constructor pXpos As Picture,
pXneg As Picture,
pYpos As Picture,
pYneg As Picture,
pZpos As Picture,
pZneg As Picture

Takes six pictures and applies them to
each of the named faces of the cube
map.

New Methods

Notes
Cube maps are a special-case glMaterial that is primarily set up for refl ection mapping.
When applied to a glTrimesh, the cube map will seem to be a shiny refl ection of an
environment onto that mesh.

Think of it this way: if you could take six photos
relative to where the car in the following diagram
is, these would correspond to:

 pXpos = to the right of you
 pXneg = to the left of you
 pYpos = above you
 pYneg = under you
 pZpos = in front of you
 pZneg = behind you

If the car were a mirrored object inside, it would refl ect the photos (I’ve pulled the +Z
“garage door” down in order to clearly show the car within).

Try an image search for “cubemap” on the Web to see examples.

Examples
Create a new glCubeMap with a single picture, and apply it to a glTrimesh. With the
default values, this cubemap will be a refl ection map.

// Assume that MyPic contains a valid picture
tm.Material.Append New glCubeMap(MyPic)

-Y

-X

+Y

+Z

-Z

+X

Class heading

55

glObject3D Class

glObject3D Class
A 3D object with one or more shapes.

New Properties

Name Type Description
IsClone Boolean If true, the glObject3D is a clone of an

existing glObject3D.

Name Parameters Description
Clone Creates a clone of this object.

Draw renderingPass
As UInt8 = 1,
ViewMatrix As
MemoryBlock

Internal function used to handle object
rendering.

DrawObject3D renderingPass
As UInt8 = 1,
ViewMatrix As
MemoryBlock

Internal function used to handle object
rendering.

HasMask If true, the current shape has a
glTrimesh with a mask in it.

Trimesh index As Integer Returns the indexth glTrimesh of the
current shape.

Update Internal function used to translate this
object

UpdatePositionWorld Internal function used to calculate this
object’s absolute world coordinates.

New Methods

Notes
The glObject3D class remains much the same as it is in RB3D. The primary difference
is that there is no function for loading text-based 3DMFs — it can only handle binary
3DMFs. There are lots of new internal functions, however, and are included in the list
for completeness.

The astute might notice that a glObject3D is nothing but a wrapper for a glGroup3D,
and to a large extent it is, but there are optimizations in the way it handles rendering
that differ from glGroup3Ds. For example, you cannot translate any glTrimesh
contained in a glObject3D using something like glObject3D.GetShape.Item(0).Position.

56

Class heading glObject3D Class

This does not mean vertex positions within each glTrimesh are immutable — you
can freely modify vertex positions however you’d like. You could call glObject3D.
GetShape.Item(n).AddToAll to reposition a glTrimesh, but that would be very slow if
used often (see glVectorList class).

Single Trimeshes
Even though GLobjects has optimizations in it for faster rendering than GLgroups,
if you’re loading a 3DMF with only a single trimesh within, then you’d be better off
loading it directly into a glTrimesh via glTrimesh.AddShapeFromFile, as a glTrimesh
will render faster than a glObject3D.

See Also
GLelement Class, glGroup3D Class, glTrimesh Class, glVectorList Class

Class heading

57

glQuaternion Class

glQuaternion Class
A class used to represent rotation

Name Parameters Description
Constructor XX As Double,

YY As Double,
ZZ As Double,
WW As Double

A convenience constructor allowing
the four values of a quaternion to be
initialized.

Constructor elem As
glElement3D

Creates a new quaternion with a link
back to its parent.

Constructor q As glQuaternion Constructs a new quaternion, copying
the values of the passed in quaternion.

Copy q As glQuaternion Copies the passed-in quaternion to self.

EulerToQuat pitch As Double,
yaw As Double,
roll As Double

Converts the passed-in pitch, yaw, and
roll into a quaternion. Assumes values
are in radians.

getMatrix Returns a memoryblock representing
a 4x4 matrix that describes the current
orientation of the quaternion.

InterpolateLinear q1 As glQuaternion,
q2 As glQuaternion,
t As Double

Performs a straight linear interpolation
between q1 and q2. Think of t as a
percentage between 0.0 and 1.0, with
t=0.0 equal to q1 and t=1.0 being q2.

InterpolateSLERP q1 As glQuaternion,
q2 As glQuaternion,
t As Double

Performs a spherical linear interpolation
between q1 and q2, with t being the
same as InterpolateLinear.

Print precision As Integer
= 6

Returns a pretty-printed string. Precision
refers to the number of decimal places
shown.

PrintAxisAngle precision As Integer
= 6

Pretty-prints the quaternion as an axis
and an angle (in radians) into a string.

PrintMatrix precision As Integer
= 4

Pretty-prints the quaterion’s matrix as a
comma-delimited, 4-lined string.

QuatToAxisAngle ByRef axis As
glVector3D,
ByRef angle As
Double

Converts this Quaternion into the
equivalent axis-angle, returning the
values through the ByRefs.

New Methods

58

Class heading glQuaternion Class

Name Parameters Description
QuatToEuler Byref pitch As

Double, Byref yaw
As Double, Byref roll
As Double

Converts this quaternion back to Euler
angles, passing the values ByRef.

RotateAboutAxis axisX as Double,
axisY as Double,
axisZ as Double,
radians as Double

Rotate this quaternion by the input axis-
angle combo.

SetBetween quat1 As
glQuaternion, quat2
As glQuaternion,
position As Double,
slerp As Boolean =
True

Same as RB3D, but if slerp is true, then
it will run InterpolateSLERP instead
of InterpolateLinear (RB3D’s default
method of interpolation)

Notes
At fi rst glance, there seems to be a whole load of new methods added atop RB3D’s
Quaternion class, but the majority of them are convenience functions, allowing one to
access or set quaternions in a greater variety of ways.

New is the ability to input to a quaternion as an axis-angle pair. This can make things
easier to visualize, as any rotation can be thought of as a rotation about a particular
axis (an axis is defi ned by three orthogonal vectors). There are some drawbacks in
thinking about quaternions in this manner, however, but that is an exercise for the
reader.

Also new is that there are two ways to interpolate between quaternions: linear or
spherical linear. While you can call InterpolateLinear and InterpolateSLERP yourself,
you can also call them indirectly through the enhanced SetBetween function, which
has an optional boolean to switch to spherical.

While it’s hard to put into words what a spherical interpolation does, the simple answer
is that the interpolation looks more organic and less rigid. There’s also more math
running under the hood of a spherical interpolation, so it’s slightly slower than linear.

See Also
Glelement3D Class, glVector3D Class

Class heading

59

glPoints Class

glPoints Class
Draws a points from an array of glVector3Ds

Properties

Name Type Description
Points() glVector3D Array of glVector3Ds describing a set of

line segments.

Name Parameters Description
Constructor vPoints() As glVector3D,

staticMesh As Boolean =
TRUE

Creates a set of points from the passed
vPoints array.

Set staticMesh TRUE if object will not
change line vertex positions.

Methods

Notes
While glPoints are drawn in 3D space, the size of the points themselves are a 2-D
construct, ie: a point at 0,0,0 is drawn at the same size as one at 0,0,-1000000). You
can use the glElement methods SetPointSize and GetPointSize to vary the size of the
points.

If you set staticMesh=TRUE, then the object will be locked and be unmodifi able, which
allows GL to optimize it for faster rendering. If false, the object will be drawn anew
each time its Draw method is called, meaning you can modify the lines on-the-fl y.

Examples
Creates a new glLines object, positioning and placing it in the GLspace View.

Dim pointsArray(-1) As glVector3D
pointsArray.Append New glVector3D(0,0,-10)
pointsArray.Append New glVector3D(0,-2,-10)
pointsArray.Append New glVector3D(2,-2,-10)
pointsArray.Append New glVector3D(2,0,-10)
Dim points As New glPoints(pointsArray)
points.SetPointSize = 3
View.Objects.Append points

See Also
glElements Class, glLines Class, glLineStrip Class, glLineLoop Class, glVector3D Class

60

glSpace Class

glSpace Class
Used to render and manipulate objects

New Properties

Name Type Description
Antialias Boolean If true, turns on full-screen antialiasing.

Default is False.

AntialiasSamples Uint32 Sets the number of antialias samples.
The number must be even numbers
starting with 2, 4, 6, etc. Default is 2.
Note there can be a signifi cant speed hit
from higher values.

BlendDst Integer Sets the default way GLelements will be
blended. Default is GL_SRC_ALPHA.

BlendSrc Integer Sets the default way GLelements will
source for blending. Default is GL_ONE_
MINUS_SRC_ALPHA.

ctx Integer The default rendering context. Set up in
the Constructor.

frusSphereCenter glVector3D The position of the frustum sphere’s
center. This is used as an early-out
calculation for GLbounds.InView test:
bounds-checking against a sphere is
faster than bounds checking against the
glSpace’s FrustumPlane.

frusSphereRadiusSq Double The radius of the frustum sphere.

FrustumPlane(5) Array of
glVector4D

The six plane equations that comprise
the frustum: left, right, bottom, top, far,
and near. Used by GLbounds.InView as a
bounds-check test and is auto-updated.

GlowEnabled Boolean If true, renders a separate glow pass that
is blended additively atop the fi nal render.
Use this in conjunction with glElement3D.
GlowEnabled to affect which elements
will be drawn during the glow pass.
Note there is a signifi cant speed hit from
turning this on.

MaxTextureUnits Integer Returns the number of textures allowed
per GLelement. This number is dependent
on your graphics card. See glMaterial for
more information.

61

glSpace Class

Name Type Description
OverlaySize Integer Sets width and height of the texture

used for Glows and Radial Blurs. Higher
powers of 2 will generate higher-quality
overlays, but will slow rendering speed.
Default is 256 .

RadialBlurEnabled Boolean If true, renders a separate blur pass that
is blended atop the fi nal render. The
effect is a basic simulation of volumetric
light streaming from all affected
GLelements.
Use in conjuction with glElement3D.
RadialBlurEnabled to control which
elements are drawn during the pass.
Note there is a signifi cant speed hit from
turning this on.

Wnd Window Reference to the window that the glSpace
is stored in. That window’s size will affect
how large the glSpace is drawn.

Name Parameters Description
PopAttrib Internally used for handling overlays.

You do not need to call this Method.

PushAttrib Internally used for handling overlays.
You do not need to call this Method.

TakeScreenshot sizeMultiplier
As Integer = 1,
updateScreen As
Boolean = False

Returns a picture proportionate to
the glSpace’s size. Set sizeMultiplier
to scale (ie: 2 = 4x bigger, 3 = 9x).
UpdateScreen optionally can display
the tiles being built.

Update Internally used to update and draw
the scene. You do not need to call this
Method.

New Methods

62

Class heading glSpace Class

Notes
glSpace retains the same functionality as RB3Dspace.

One new functionality is the concept of overlays. Overlays render atop the regular
render and are generated as as a separate rendering pass. Needless to say, if you
render the scene with both glow and radial blur, that means the glSpace is rendering
your scene three times, meaning your framerate will drop accordingly. This is
mitigated somewhat by keeping the OverlaySize value small.

You can control which objects are rendered with blur or radial blur by setting the
appropriately-named properties within glElement3D.

Another item which can slow rendering rates is full-screen antialiasing. This is
dependent on the graphics card, as some handle aliasing better than others. Currently
there is no way to reset AntialiasSamples as the glSpace is being run — it has to be
set manually by editing the default value of AntialiasSamples in the IDE. However, you
can enable/disable Antialias at any time.

There are a number of properties and methods that are exposed solely because other
classes need access to them. They are automatically generated by glSpace, so do not
need to be modifi ed. These include the frustum properties and the window context, as
well as the Update and pushAttrib/popAttrib functions.

Examples
Initializes a new glSpace and binds it to Window1. This code might reside in Window1.
Open, for example. View is a property of type glSpace in Window1.

View = New glSpace(Window1)

Sets the default blending for elements. Refer to http://www.opengl.org/documentation/
specs/man_pages/hardcopy/GL/html/gl/blendfunc.html for more information on what
values can be set here.

View.BlendSrc = GL_SRC_ALPHA
View.BlendDst = GL_ONE_MINUS_SRC_ALPHA

See Also
glState Class, GLbounds3D Class, glElement3D Class

Class heading

63

glTorus Class

glTorus Class
Creates a torus centered at the origin and drawn around the Z-axis.

Properties
Name Type Description
innerRadius Double The “thickness” of the torus as

constructed around the outerRadius.
Note: Setting this to zero may result in a
divide by zero error.

outerRadius Double The radius of the torus.

rings Double Number of sides for each radial section.
Note: Setting this below 2 will result in no
torus to be visible.

sides Double Number of radial divisions for the torus.

staticMesh Boolean If True, then compile the torus in OpenGL
for faster redraw. If false, the torus will be
redrawn every glSpace update.

Name Parameters Description
Constructor inRad As Double,

outRad As Double,
numSides As Integer,
numRings As Integer,
staticMesh As
Boolean = TRUE

Creates a torus from the passed
parameters.
inRad=innerRadius numSides = sides
outRad=outerRadius numRings = rings

Set staticMesh TRUE if object will not
change shape.

Methods

Notes
This class uses OpenGL display lists to build the torus.

Examples
Creates a new torus with radius 5, a thickness of 2, with 11 ring segments around the
radius with 2 sides: essentially a fl at disc.

Dim torus As glElement3D
torus = new glTorus(2,5,2,11)

64

Class heading glTorus Class

Creates a new torus with radius 5, a thickness of 2, with 11 ring segments around the
radius with 6 sides.

Dim torus As glElement3D
torus = new glTorus(2,5,6,11)

See Also
glElement3D Class

innerRadius=2
outerRadius=5

rings=11

sides=6

cross-section
of torus

22

5

1
2

3

4

5

1 2

36

45

67

8

9

10

11

Class heading

65

glTriangleList Class

glTriangleList Class
Stores triangle defi nitions as comprised of indices A, B, and C

New Properties

Name Type Description
Handle MemoryBlock Stores the index list in an OpenGL-

friendly format.

Name Parameters Description
Count Returns the number of indices

Copy other As
glTriangleList,
RangeLow As
Integer = -1,
RangeHigh As
Integer = -1

Copies the passed TriangleList to the
current TriangleList.
If a range of indices is set between
RangeLow and RangeHigh, only
perform copy on range given.

IsDirty Returns True if an index has changed.

SetVector index As Integer,
ABC As glVector3D

A convenience function allowing the
setting of a single triangle’s indices
using a glVector3D.

New Methods

Notes
The class as-is only allows up to 65,535 vertices. The reason is because OpenGL is
currently optimized to use 16-bit unsigned integers for triangle index information.

See Also
glVector3D Class, GLVectorList Class

66

Class heading glTrimesh Class

glTrimesh Class
Used to render a single trimesh.

New Properties

Name Type Description
IsClone Boolean If true, this trimesh is a clone and thus

will inherit changes from its parent.

Object3D Integer Internal value for OpenGL, holding an
identifi er of this trimesh in GPU memory.

Name Parameters Description
Clone CloneMaterials As

Boolean = True
Returns a clone of this trimesh. If false,
the boolean parameter decouples the
materials, meaning any parent changes
to its’ materials won’t affect this clone.

Constructor File As FolderItem Loads the fi rst trimesh found in a 3DMF
fi le into this trimesh.

Constructor key As String An internal constructor

Constructor tm As Trimesh, name
As String, pGrp As
glGroup3D=Nil

An internal constructor used by
glObject3D.

Copy other As glTrimesh Copies the given glTrimesh into this
one. This is not a clone, so it won’t
share any properties with the original.

Draw renderingPass
As UInt8 = 1,
ViewMatrix As
MemoryBlock

Internal function used to render the
trimesh.

DrawObject3D renderingPass
As UInt8 = 1,
ViewMatrix As
MemoryBlock

Internal function used by glObject3D
to render the trimesh. There are
optimizations here that help it render
faster than a straight Draw for
glObject3Ds.

HasMask Returns true if any material attached
has an alpha mask.

New Methods

Class heading

67

glTrimesh Class

Notes
This is where the physical object truly lies. There are lots of things set at the
glElement3D level which are meant to directly affect how glTrimeshes are drawn. The
basic functionality remains the same, however.

New to glTrimeshes is the ability to load a 3DMF directly into it. The reason is that
rendering a single mesh via glTrimesh is faster than doing it through glObject3D. Note
that you can copy a glTrimesh from one to another, so you could load a 3DMF into a
glObject3D and extract the glTrimesh yourself.

You can also clone glTrimeshes. This is useful because this opens up rendering
optimizations: Say you have a GLgroup of Gltrimesh clones. You could set the base
lighting of all the clones en masse, or even animate one clone and have the rest follow
suit.

If you dig under the hood more deeply, then note that meshes are stored in OpenGL
vertex buffer objects, meaning your target system’s OS must support OpenGL 1.4 or
higher.

See glMaterial for information about combining glMaterials and vertexColors. In a
nutshelf, glMaterials will overwrite vertexColors by default.

Examples
Loads a glTrimesh from a 3DMF fi le in FolderItem f. 10 clones are created of the
glTrimesh and placed into a glGroup3D. The glGroup3D is given a material and has
its lighting values set while the clones are told to ignore their own texture lighting, thus
ceding their control over their own lighting to the glGroup3D.

Dim tm As New glTrimesh
Dim tmGrp(-1) As glTrimesh
Dim grp = New glGroup3D
tm.AddShapeFromFile(f)
grp.Material.Append New glMaterial
grp.Material(0).DiffuseColor = RGB(255, 255, 255)
grp.Material(0).AmbientColor = RGB(255, 255, 255)
grp.Material(0).SpecularColor = RGB(127, 127, 127)
grp.Material(0).Shininess = 4.0
For i = 0 to 9
 tmGrp.Append tm.Clone
 grp.Append tmGrp(i)
 tmGrp(i).IgnoreTextureLighting = True
Next

See Also
glMaterial Class, glVector3D Class, GLVectorList Class

68

Class heading gluCylinder Class

gluCylinder Class
Creates a cylinder using the GLU library

Properties

Name Type Description
Base Double Specifi es the radius of the cylinder at z =

0.

Top Double Specifi es the radius of the cylinder at z =
Height. If set to 0.0, you get a cone.

Height Double Specifi es the height of the cylinder.

Slices Double Specifi es the number of subdivisions
around the z axis.

Stacks Double Specifi es the number of subdivisions
along the z axis.

OrientationOutward Boolean = TRUE Decides normal orientation. False means
normals are pointing inward (you may
need to set RenderBackFaces = TRUE to
see the results).

Name Parameters Description
Constructor bs As Double, tp As

Double,
ht As Double,
sli As Double,
sta As Double,
staticMesh As
Boolean = TRUE,
texCoords As
Boolean = FALSE

Creates a cylinder from the passed
parameters.
bs = Base sli = Slices
tp = Top sta = Stacks
ht = Height

Set staticMesh TRUE if object will not
change shape.
Set texCoords TRUE if you want texture
coordinates applied automatically
(this is dependent on your OpenGL
implementation).

Methods

Class heading

69

gluCylinder Class

Notes
This is an easy-to-use method for generating cylinders. Be aware of the Base and
Top values running along the Z-axis — your cylinder will be created “lying down” so to
speak.

If you set staticMesh=TRUE, then the object will be locked and be unmodifi able, which
allows GL to optimize it for faster rendering. If false, the object will be drawn anew
each time its Draw method is called, meaning you can modify the object on-the-fl y.

Base

H
ei

gh
t

Base

Slices = 8 (octagon)
Stacks = 0

Slices = 6 (hexagon)
Stacks = 2

Top = 0 Top = Base

H
ei

gh
t

Examples
Creates a new cylinder object, positioning and placing it in the GLspace View.

Dim cylinder As New gluCylinder(2,0,2,10,10)
cylinder.UpdatePosition(5,0,-20)
View.Objects.Append cylinder

See Also
gluSphere Class, gluDisk Class, gluPartialDisk Class

70

Class heading gluDisk Class

gluDisk Class
Creates a fl at two-dimensional disk (with optional hole) using the GLU library

Properties

Name Type Description
Inner Double Specifi es the inner radius of the disk (can

be zero for a solid disk)

Loops Integer Specifi es the number of concentric rings
about the origin into which the disk is
subdivided.

Outer Double Specifi es the outer radius of the disk.

Slices Integer Specifi es the number of subdivisions
around the z axis

OrientationOutward Boolean = TRUE Decides normal orientation. False means
normals are pointing inward (you may
need to set RenderBackFaces = TRUE to
see the results).

Name Parameters Description
Constructor inn As Double,

out As Double,
sli As Double,
lp As Integer,
staticMesh As
Boolean = TRUE,
texCoords As
Boolean = FALSE

Creates a disk from the passed
parameters.
inn = Inner sli = Slices
out = Outer lp = Loops

Set staticMesh TRUE if object will not
change shape.
Set texCoords TRUE if you want texture
coordinates applied automatically
(this is dependent on your OpenGL
implementation).

Methods

Class heading

71

gluDisk Class

Notes
This class renders the disk on the Z plane, so the disk is “standing up.” If inner=0,
then no hole will be created. The slices property controls how round the disk looks, ie:
slices=6 would look like a hexagon, slices=8 an octagon, and so forth. Loops controls
how many concentric rings are drawn within the ring.

See gluCylinder class notes for information about setting staticMesh in the
constructor.

Inner = 0
Slices = 12 sides

Loops = 2

Slices = 12 sides
Loops = 1

Outer OuterInner

Solid disk Doughnut

Examples
Creates a new disk object, positioning and placing it in the GLspace View.

Dim disk As New gluDisk(1,2,8,8)
disk.UpdatePosition(-5,0,-20)
View.Objects.Append disk

See Also
gluCylinder Class, gluPartialDisk Class, gluSphere Class

72

Class heading gluPartialDisk Class

gluPartialDisk Class
Creates a fl at two-dimensional arc of a disk (with optional hole) using the GLU library

Properties

Name Type Description
Inner Double Specifi es the inner radius of the disk (can

be zero for a solid disk)

Loops Integer Specifi es the number of concentric rings
about the origin into which the disk is
subdivided.

Outer Double Specifi es the outer radius of the disk.

Slices Integer Specifi es the number of subdivisions
around the z axis

Start Double Specifi es the starting angle, in degrees,
of the disk portion

Sweep Double Specifi es the sweep angle, in degrees, of
the disk portion

OrientationOutward Boolean = TRUE Decides normal orientation. False means
normals are pointing inward (you may
need to set RenderBackFaces = TRUE to
see the results).

Name Parameters Description
Constructor inn As Double,

out As Double,
sli As Double,
lp As Integer,
st As Double,
sw As Double,
staticMesh As
Boolean = TRUE,
texCoords As
Boolean = FALSE

Creates a disk from the passed
parameters.
inn = Inner sli = Slices
out = Outer lp = Loops
st = Start sw = Sweep

Set staticMesh TRUE if object will not
change shape.
Set texCoords TRUE if you want texture
coordinates applied automatically
(this is dependent on your OpenGL
implementation).

Methods

Class heading

73

gluPartialDisk Class

Notes
This class renders a partial disk on the Z plane, so the disk is “standing up.” The
parameters are similar to gluDisk, with two new additions: Start and Sweep. Start
specifi es at what angle (in degrees) to start the disk, while Sweep specifi es how many
degrees to sweep from the Start.

The angles run from 0º along the +Y axis, 90º along the +X axis, 180º along -Y, and
270º along -X. So a counterclockwise rotation, if you prefer.

See gluCylinder class notes for information about setting staticMesh in the
constructor.

Inner = 0
Slices = 12 sides

Loops = 2

Sweep = 270º
Slices = 12 sides

Loops = 1

Outer Outer
Inner

Start = 0º Start = 0º

Sweep =
27

0º

Sweep =
27

0º

Examples
Creates a new partial disk object, positioning and placing it in the GLspace View.

Dim partialDisk As New gluPartialDisk(1,2,8,8,0,270)
partialDisk.UpdatePosition(0,-5,-20)
View.Objects.Append partialDisk

See Also
gluCylinder Class, gluDisk Class, gluSphere Class

74

Class heading gluSphere Class

gluSphere Class
Creates a sphere using the GLU library

Properties

Name Type Description
Radius Double Specifi es the radius of the sphere

Slices Double Specifi es the number of subdivisions
around the z axis

Stacks Double Specifi es the number of subdivisions
along the z axis

OrientationOutward Boolean = TRUE Decides normal orientation. False means
normals are pointing inward (you may
need to set RenderBackFaces = TRUE to
see the results).

Name Parameters Description
Constructor rad As Double,

sli As Integer,
sta As Integer,
staticMesh As
Boolean = TRUE,
texCoords As
Boolean = FALSE

Creates a sphere from the passed
parameters.
rad = Radius sli = Slices
sli = Top sta = Stacks

Set staticMesh TRUE if object will not
change shape.
Set texCoords TRUE if you want texture
coordinates applied automatically
(this is dependent on your OpenGL
implementation).

Methods

Notes
See gluCylinder class notes for info about setting staticMesh in the constructor.

Examples
Creates a new sphere object, positioning and placing it in the GLspace View.

Dim sphere As New gluSphere(2,15,15)
sphere.UpdatePosition(0,0,-20)
View.Objects.Append sphere

See Also
gluCylinder Class, gluDisk Class, gluPartialDisk Class

Class heading

75

glUVList Class

glUVList Class
Stores texture coordinates as UV coordinates.

New Properties

Name Type Description
Handle MemoryBlock Stores the UV list in an OpenGL-friendly

format.

Count Returns the number of vertices minus
one for a zero-based count.

Name Parameters Description
AddToAll dU As Double,

dV As Double,
RangeLow As
Integer = -1,
RangeHigh As
Integer = -1

Adds the U, V values to the current
UVlist.
If a range of indices is set between
RangeLow and RangeHigh, only
perform add on range given.

Copy otherUVList
As GLUVList,
RangeLow As
Integer = -1,
RangeHigh As
Integer = -1

Copies the passed UVlist to the current
UVlist.
If a range of indices is set between
RangeLow and RangeHigh, only
perform copy on range given.

IsDirty Returns True if a UV coordinate has
changed.

New Methods

Notes
The class uses Single values instead of Doubles as in RB3D. The reason is because
OpenGL is currently optimized to use 32-bit fl oats for UV coordinates information.

See Also
GLVectorList Class

76

Class heading glVector3D Class

glVector3D Class
Same as RB3D’s Vector3D class

New Methods

Name Parameters Description
getMemoryBlock Returns a MemoryBlock describing X,

Y, and Z as 3 single values. Used by a
number of OpenGL Declares.

getMemoryBlockAsDouble Returns a MemoryBlock describing X,
Y, and Z as 3 double values.

IsEqual v as glVector3D Returns true if the passed glVector3D
has the same X, Y, and Z values as
itself.

Print precision As
Integer = 6

Returns the vector as a String.
Precision sets how many places will be
seen in the fractional part of each X, Y,
and Z coordinates.

SetXYZ XX As Double,
YY As Double,
ZZ As Double

A convenience function which sets X,
Y, and Z all in one function. This is the
same as saying:
vec.X = XX
vec.Y = YY
vec.Z = ZZ

Notes
Nothing has changed aside from having some convenience functions. The
memoryBlocks are used in OpenGL Declare calls.

See Also
glVector4D Class, glVectorList Class

Class heading

77

glVector4D Class

glVector4D Class
Similar to glVector3D, except with a fourth property.

New Methods

Name Parameters Description
DotPlane v As glVector3D Returns the dot product of X,Y,Z,

ignoring W. This is primarily when
a glVector4D is used for plane
equations.

NormalizePlane Special case where a vector4D is used
to represent a plane, treating XYZ as
the plane normal (vector3D) and W
as the distance from the origin. We
want to be able to normalize the plane
normal apart from affecting W, which
is what the Normalize method would
affect.

SetXYZW XX As Double,
YY As Double,
ZZ As Double,
WW as Double

A convenience function which sets X,
Y, Z, and W all in one function. This is
the same as saying:
vec.X = XX
vec.Y = YY
vec.Z = ZZ
vec.W = WW

Notes
This is strictly a convenience structure useful for OpenGL Declare calls (like for
color values or for plane equation variables). As such, the Functions mimic those in
glVector3D, except handling the added W, which is also a Double value like its X, Y,
and Z counterparts.

See Also
glVector3D Class, glSpace Class, GLbounds Class

78

Class heading glVectorList Class

glVectorList Class
Stores vertex data for a glTrimesh.

New Properties

Name Type Description
Handle MemoryBlock Stores the vertex list in an OpenGL-

friendly format.

Count Returns the number of vertices minus
one for a zero-based count.

Name Parameters Description
Add delta As glVector3D,

RangeLow As
Integer = -1,
RangeHigh As
Integer = -1

Adds the passed Vector3D to all vectors
in the list.
If a range of indices is set between
RangeLow and RangeHigh, only
perform add on range given.

AddList other As glVectorList,
RangeLow As
Integer = -1,
RangeHigh As
Integer = -1

Adds the passed VectorList to the
current VectorList.
If a range of indices is set between
RangeLow and RangeHigh, only
perform add on range given.

Bloat amt As Double,
normals As
glVectorList,
RangeLow As
Integer = -1,
RangeHigh As
Integer = -1

Extends each vertex outwards along a
vertex normal by mutiplier amt.
If a range of indices is set between
RangeLow and RangeHigh, only work
on the range given.

IsDirty Returns True if a vertex position has
changed.

New Methods

Notes
The class uses Single values instead of Doubles as in RB3D. The reason is because
OpenGL is currently optimized to use 32-bit fl oats for vertex coordinates information
— any higher and there might be a performance decrease.

There is also an example function of sorts: Bloat. This function is there purely as a for-
fun test that I was so happy with that I decided to leave it as a feature. It’s also a good

Class heading

79

glVectorList Class

example unto itself on how to use a VectorList to its fullest.

One function that is slightly deprecated is NormalizeAll. The reason I call it such is that
the glState TrimeshScaled does the same thing and on the GPU to boot, so it’s much
faster than using NormalizeAll.

Examples
In the section for glObject3D, there’s a tip about repositioning a glTrimesh within a
glObject3D. While this is inherently slow, here’s how to do it. Assuming you have an
obj of type glObject3D, you can reposition the fi rst glTrimesh within it 10 units upwards
as such:

obj.Trimesh(0).AddToAll(0,10,0)

Performs a linear morph halfway between TrimeshStart and TrimeshEnd and stores
it in another GLTrimesh morphTm. Note that this will permanently alter the morphed
Trimesh. All Trimeshes are assumed to have the same number of vertices and that
TrimeshStart and TrimeshEnd are morph pose targets. This is also not optimal code,
but is a simple example on how to morph a trimesh.

Dim TMs As glVector3D
Dim TMe As Glvector3D
Dim v As glVector3D
For i = 0 to morphTm.VertexPositions.VertexUbound
 TMs = TrimeshStart.VertexPositions.GetVector(i)
 TMe = TrimeshEnd.VertexPositions.GetVector(i)
 v = TMe.Minus(TMs) // difference between targets
 v.Length = v.Length*0.5 // halfway
 v = TMs.Plus(v) // fi nal vertex position
 morphTM.VertexPositions.SetVector(i, v)
Next

