
2D

glComponent

XojoGL - Component Hierarchy Beta v1.0

Other classes

Data types Modules

glGLSLuniform

glElement3D

glTransform3D

glMeshData

glBounds3D

glMeshData

glSpace glFramebuffer glPointParticles glShader

glMathglVector2D

glVector3D

glVector4D

glQuaternion

XY data

XYZ data

XYZW data

XYZW data for rotation

IntersectTests

ASSIMP (Open asset importer) SimpleShaderMaker

glCamera

glVertexData glTriangleData Instance glBounds3D

glMaterial
glCubeMap

glTrimesh

glGroup3D

glCube
glCubeOutline
glCylinder
glExtrude
glLathe
glOverlay
glPartialDisk
 glDisk
glPathExtrude
glQuad
glSolidDisk
glSphere
glTorus

Solid cuboid shape

Cuboid outline only

Hollow cylinder

Single-axis direction extrude

360º lathe around Y-axis

Screen-facing quad

Flat disk with adjustable sweep

360º flat disk

Extrude along 3D path

Flat quad

Flat solid disk

Sphere

Torus with inner/outer radii

glTransform3D

Base class. Can send GLSL uniforms to

shader to set uniforms per-component.

Basic camera operations. Can have more than

one within a glSpace: can subdivide glSpace or

overlap cameras for picture-in-picture effect.
Handles position,

rotation, scale

Handles position,

rotation, scale

Groups glComponents as one local group.

Component movement is local within group.

Handles vertex and triangle data. Also

does drawing and drawing instances.

OpenGLSurface that handles drawing. While

there can be more than one, data cannot be

shared between them.

Convenience class for setup and maintenance

of OpenGL framebuffers.

A quick-and-dirty way of using point particles,

though it does require a bit of setup inside your

glSpace and your glShaders.

A collection of math functions that work with

vectors, quaternions, and matrices. Also, there

are several miscellaneous math functions that

I’ve found useful enough to include here.

Various 3D intersect tests. Useful for collision

detection but no broad- or narrow-phase

collision detection algorithms are provided.

OpenGL Declares

GL_ARB

GL_EXT

GLU

*The OS-specific commands in the right

 column are not fully implemented

AGL

GLextApple

WGL

WGLext

Used to call OpenGL commands. Includes

modules up to OpenGL 4.3. CAUTION: Not

every call has been properly vetted.

Also includes commands for:

NOTE: glMath Module handles the math

operations for all of these types.

A basic glShader creator meant to get you up

and running. Can create a single diffuse texture

with separate ambient, diffuse, specular, and

roughness properties as well as multiple lights.

Handles loading of meshes from many 3D

formats. While everything is parsed, not

everything is currently used by XojoGL. Uses

the v4.1 library for Mac and Windows.

Maintains and updates GLSL shaders.

Currently handles vertex, fragment, geometry,

and tesselation control shaders.

Adds mesh data for a single mesh.

Adds controls for transforms,

materials, and bounds.

Handles drawing vertex

and triangle data. Also

handles drawing multiple

instances.

Interleaved vertex data

for the model.

Optional triangle index

data.

Optional: data for drawing

multiple instances.

Bounding box and

bounding sphere data

Bounding box and

bounding sphere data Texture data

Handles setting uniform

variables in a glShader.

B
e

s
t p

ra
c
tic

e
: F

o
r s

in
g
le

 m
e
s
h
e
s
 o

u
 m

a
y
 w

a
n
t th

e
 g

lE
le

m
e
n
t3

D
.B

o
u
n
d
s

to
 p

o
in

t to
 th

e
 o

n
e
 in

 g
lM

e
s
h
D

a
ta

 a
s
 it c

a
lc

u
la

te
s
 th

e
 b

o
u
n
d
s

a
u
to

m
a
tic

a
lly

 a
s
 it p

ro
c
e
s
s
e
s
 v

e
rte

x
 d

a
ta

 d
u
rin

g
 c

re
a
tio

n
.

THE BIG IDEA: glTrimesh handles meshes
Draw: glTrimesh.Draw()
Position, rotate, scale: glTrimesh.Transform
Manually build meshes: glTrimesh.Mesh
Collision: Call IntersectTests with glTrimesh.Bounds

ASSIMP loads meshes as glGroups
Will also add glGLSLuniforms for material data, but you
may need to change names to match your shaders: the
names added reflect those used by the
SimpleShaderMaker Module.

THE BIG IDEA:
glComponent: handles GLSL Uniforms
 glElement: adds transforms, bounds, materials
 glTrimesh: adds mesh data

WHEN RENDERING, REMEMBER TO:
Aim cameras (if any are used)
For every change of glSpace rendering states
{
 For every shader used
 {
 Activate shader
 Send GLSL uniforms
 Draw models
 }
}

TRANSFORMING ELEMENTS:
Use the glTransform3D property to
- Position: Transform.Position (glVector3D)
 Transform.MoveForward (distance amount)
- Rotate: Transform.Rotate (glQuaternion; default is 0,0,0,0)
 Transform.Pitch (angle in radians around local X-axis)
 Transform.Yaw (angle in radians around local Y-axis)
 Transform.Roll (angle in radians around local Z-axis)
- Scale: Transfrom.Scale (glVector3D; default is 1,1,1)

glMATH MODULE

glGROUP3D usage:
glGroup.Append(glComponent)
glGroup.Remove(component name)
Each glComponent accessible from glGroup.Child array.
glComponents within array have transforms LOCAL
to the glGroup they are within and will be affected by
any transforms performed on the glGroup itself.

Bezier

Clamp

CosignInterpolate

Degree

Float16ToFloat32

Float32ToFloat16

fMod

frameToUV

GetVertexData

glFrustum

glOrtho

gluPerspective

gluUnproject

LinearInterpolate

Print

Calculates curve using four input points and a delta time value.

Clamps a value from going over or under the given range.

Simple ease-in, ease-out between 0.0 <= delta <= 1.0.

Converts a radian value into a degree.

Decodes16-bit half float into 32-bit float.

Encodes 32-bit float to a 16-bit half float.

Implementation of floatMod function from C.

Converts a given frame number and returns UV coordinates.

Builds MemoryBlock from array of Singles.

Returns glFrustum matrix.

Returns orthographic projection matrix.

Returns perspective projection matrix.

Converts object coordinates to window coordinates.

Linear interpolation between 0.0 <= delta <= 1.0.

Returns passed data type as String. Works with

4x4 matrices, glVector2D, -3D, and -4D.

Copies a 4x4 as a MemoryBlock.

Creates matrix given 16 Singles in row-major order.

Returns an identity matrix.

Create matrix given position, Euler angles, and scale.

Creates matrix for rotation.

Creates matrix for rotation around the X axis.

Creates matrix for rotation around the Y axis.

Creates matrix for rotation around the Z axis.

Create a XYZ scale-only matrix.

Create a translate-only matrix.

Create a combined translate & scale matrix.

Retrieve position, Euler angles, and scale from matrix.

Retrieve only XYZ position from matrix.

Retrieve only Euler angles from matrix.

Retrieve only XYZ scale from matrix.

Returns the determinant of a matrix.

Multiply a vector3D and a matrix.

Multiply a vector4D and a matrix.

Multiply matrix with a 3x3 matrix.

Multiply matrix with a quaternion.

Multiply matrix with XYZ scale.

Multiply matrix with XYZ position coordinates.

Reset passed-in matrix back to Identity matrix.

Invert a 4x4 matrix.

Determines if matrix is an Identity matrix.

Returns matrix aiming towards desired target.

Same as LookAt(), but makes matrix point towards camera.

Multiplies 2 matrices, assuming last row is homogeneous.

Full multiply of two matrices.

Multiplies a transform and rotation matrix.

Returns rotation matrix based on given direction.

Scales a matrix by XYZ scale.

Set rotation part of matrix by input quaternion.

Set position part of matrix by input vector3D.

Multiply matrix by input position vector.

Multiply matrix by input position & scale vectors.

Transpose given matrix.

0.000001

2 * Pi

Multiply degree by this to get value in radians.

Size of a matrix of Single values.

3.14

Half Pi

Pi / 360

Multiply radian by this to get value in degrees.

Size of 2 Singles.

Size of 3 Singles.

Size of 4 Singles.

CONSTANTS
EPSILON

k2Pi

kDegreeToRadian

kMatrix4x4Size

kPi

kPiOver2

kPiOver360

kRadianToDegree

kVector2Dsize

kVector3Dsize

kVector4Dsize

Transforms vector by adding input vector.

Angle in radians between two vectors.

Returns vector smoothly interpolated between 2 input vectors.

Returns new vector based on cross product.

Returns vector smoothly interpolated between 2 input vectors.

Dot product with another vector3D.

Returns vector as a 12-byte MemoryBlock.

Check is another vector is equal to me within epsilon.

Length of vector.

Squared length of vector.

Returns new vector from subtraction between 2 vectors.

Returns new vector from multiplying 2 vectors.

Transforms vector by component-wise multiplcation.

Returns new vector by negating all values.

Transforms vector to unit vector via normalization.

Returns new normalized vector from input vector.

 Returns world position given local position & matrix.

Returns new vector by adding input vector.

Transforms vector by subtracting input vector.

Transforms vector by multiplying input vector.

Transforms vector by component-wise multiplication.

 Returns local position given world position & matrix.

v3_
Add

AngleBetween

CosineInterpolate

Cross

CubicInterpolate

Dot

GetMatrix

IsEqual

Length

LenSquared

Minus

Multiply

MultiplyVec3

Negate

Normalize

NormalizeNew

ObjectToWoldTransform

Plus

Subtract

Times

TimesVec3

WorldToObjectTransform

v2_
Add

CosineInterpolate

IsEqual

Length

LenSquared

Minus

Multiply

Normalize

Plus

Subtract

Times

glVector2D and glVector4D functions work similarly to their glVector3D counterpart.

v4_
Add

DotPlane

GetMtarix

IsEqual

Length

LenSquared

Minus

Multiply

Normalize

NormalizePlane

Plus

Subtract

Times

m44_
Copy

Create4x4

CreateIdentity

CreateModelview

CreateRotate

CreateRotateX

CreateRotateY

CreateRotateZ

CreateScale

CreateTranslate

CreateTranslateScale

Decompose

DecomposePosition

DecomposeRotationEuler

DecomposeScale

Determinant

GetMultVec3

GetMultVec4

GetRotate

GetRotateQuat

GetScale

GetTranslate

Identity

Inverse

IsIdentity

LookAt

LookAtSpirte

Mult4x3

Mult4x4

Rotate

RotationAlign

Scale

SetRotate

SetTranslate

Translate

TranslateScale

Transpose

